The possibility of using zero-valent iron as permeable reactive barrier in removing lead from a contaminated groundwater was investigated. In the batch tests, the effects of many parameters such as contact time between adsorbate and adsorbent (0-240 min), initial pH of the solution (4-8), sorbent dosage (1-12 g/100 mL), initial metal concentration (50-250 mg/L), and agitation speed
(0-250 rpm) were studied. The results proved that the best values of these parameters achieve the maximum removal efficiency of Pb+2 (=97%) were 2 hr, 5, 5 g/100 mL, 50 mg/L and 200 rpm respectively. The sorption data of Pb+2 ions on the zero-valent iron have been performed well by Langmuir isotherm model in compared with Freundlich model under the studied conditions. Finite difference method and computer solutions (COMSOL) multiphysics 3.5a software based on finite element method were used to simulate the one-dimensional equilibrium transport of lead through sand aquifer with and without presence of barrier. The predicted and experimental results proved that the reactive barrier plays a potential role in the restriction of the contaminant plume migration and a reasonable agreement between these results was recognized.
Release of industrial effluents comprising dyes in water bodies is one of the foremost causes of water pollution. Therefore, the proper and proficient treatment of these dyes contaminated left-over material before their release is crucial. Herein, an eco-friendly biological macromolecule Gum-Acacia (GA) integrated Fe3O4 nanoparticles composite hydrogel was manufactured via co-precipitation technique for effective adsorption of Congo red (CR) dye existing in water bodies. The as-prepared magnetic GA/Fe3O4 composite hydrogel was characterized by FTIR, XRD, EDX, VSM, SEM, and BET techniques. These studies discovered the fruitful fabrication of biodegradable magnetic GA/Fe3O4 composite hydrogel possessing porous structure with large surface are
... Show MoreRecently, interest in the use of projectiles in research on recycling waste materials for construction applications has grown. Using recycled materials for the construction of asphalt concrete pavement, in the meantime, has become a topic of research due to its significant benefits, such as cost savings and reduced environmental impacts. This study reports on comprehensive experimental research conducted using a typical mechanical milling waste, iron filing waste (IFW), as an alternative fine aggregate for warm mix asphalt (WMA) for pavement wearing surface applications. A type of IFW from a local machine workshop was used to replace the conventional fine aggregate, fine natural sand (FNS), at percentages of 25%, 50% 75%, and 100% b
... Show MoreArchives of Razi Institute (ARI)
Every year, millions of tons of waste glass are created across the globe. It is disposed of in landfills, which is unsustainable since it does not disintegrate into the environment. This study aims to produce reactive powder concrete by using recycled glass powder and determine the influence on the mechanical properties. This study investigated the effect of partial replacement of cement with recycled glass powder at two percentages (0, 20) % by weight of cement on some mechanical properties (Fresh density, Splitting tensile strength, Impact Strength, and voids%) of reactive powder concrete containing 1 % micro steel (MSRPC). Furthermore, using steam curing for (5 hours) at 90 degrees celsius after hardening the sample directly, RPC was
... Show MoreThis study was conducted to estimate the extent of damage to the population in Basra, southern Iraq, specifically the areas adjacent to the Shatt al-Arab and the Arabian Gulf, which are the Al-Fao district and the Al-Siba region. They are affected by the progression of saline water resulting from the lack of water imports and the Karun River interruption, which led to high concentrations of salts in the Shatt Al-Arabs. Consequently, its effect on lands and all life types in these areas requires correcting a map of the study area to drop the groundwater sites as well as calculate the total dissolved salts, electrical conductivity and pH. This study concluded that the groundwater contains very high percentages of total dissolved solid
... Show MoreThe pollution producing from textile industries effluents is growing since the years, due to at discharged lots of it in water without treatment. The resulting effluent is colourful, highly toxic, and poses a significant environmental hazard. This problem can be solved by using enzymic biological treatment, where the Congo red dye was used with concentrations (100,200,300,500) mg /L, pH values (3,4,5,6,7,8), and variable temperatures (25,35,45)°C, the best removal of Congo red (CR) dye under optimum conditions for degradation was at concentration of 100 mg/L, at (pH 6, 25 °C) with efficiency of 99.85 % using the peroxidase enzyme extracted from red radish plant, while the removal percentage decreased when increase dye concentration
... Show More