Preferred Language
Articles
/
joe-2560
MR Brain Image Segmentation Using Spatial Fuzzy C- Means Clustering Algorithm
...Show More Authors

conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation. 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Physics
Lineament automatic extraction analysis for Galal Badra river basin using Landsat 8 satellite image
...Show More Authors

This research including lineament automated extraction by using PCI Geomatica program, depending on satellite image and lineament analysis by using GIS program. Analysis included density analysis, length density analysis and intersection density analysis. When calculate the slope map for the study area, found the relationship between the slope and lineament density.
The lineament density increases in the regions that have high values for the slope, show that lineament play an important role in the classification process as it isolates the class for the other were observed in Iranian territory, clearly, also show that one of the lineament hit shoulders of Galal Badra dam and the surrounding areas dam. So should take into consideration

... Show More
View Publication Preview PDF
Crossref (13)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Advances In Computational Intelligence And Robotics
Groupwise Non-Rigid Image Alignment Using Few Parameters: Registration of Facial and Medical Images
...Show More Authors

Groupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff

... Show More
View Publication
Publication Date
Thu Aug 31 2023
Journal Name
Journal Européen Des Systèmes Automatisés​
Deep Learning Approach for Oil Pipeline Leakage Detection Using Image-Based Edge Detection Techniques
...Show More Authors

Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Car Logo Image Extraction and Recognition using K-Medoids, Daubechies Wavelets, and DCT Transforms
...Show More Authors

     Recognizing cars is a highly difficult task due to the wide variety in the appearance of cars from the same car manufacturer. Therefore, the car logo is the most prominent indicator of the car manufacturer. The captured logo image suffers from several problems, such as a complex background, differences in size and shape, the appearance of noise, and lighting circumstances. To solve these problems, this paper presents an effective technique for extracting and recognizing a logo that identifies a car. Our proposed method includes four stages: First, we apply the k-medoids clustering method to extract the logo and remove the background and noise. Secondly, the logo image is converted to grayscale and also converted to a binary imag

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Jul 19 2019
Journal Name
Iraqi Journal Of Science
Comparative Study of Ranking Methods for Fuzzy Transportation
...Show More Authors

There are several methods that are used to solve the traditional transportation problems whose units of supply, demand quantities, and cost transportation are known exactly. These methods obtain basic solution, and develop it to the best solution through a series of consecutive calculations to obtain the optimal solution.
The steps are more complex with fuzzy variables, so this paper presents the disadvantages of solutions of the traditional ways with existence of variables in the fuzzy form.
This paper also presents a comparison between the results that emerged after using different conversion ranking formulas to convert from fuzzy form to crisp form on the same numerical example with a full fuzz

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Planning the Production of the Electrical Distribution Converter (400KV/11) Using Time Series Methods and Goal Programming in the Fuzzy Environment
...Show More Authors

This Paper aims to plan the production of the electrical distribution converter (400 KV/11) for one month at Diyala Public Company and with more than one goal for the decision-maker in a fuzzy environment. The fuzzy demand was forecasting using the fuzzy time series model. The fuzzy lead time for raw materials involved in the production of the electrical distribution converter (400 KV/11) was addressed using the fuzzy inference matrix through the application of the matrix in Matlab, and since the decision-maker has more than one goal, so a mathematical model of goal programming was create, which aims to achieve two goals, the first is to reduce the total production costs of the electrical distribution converter (400 KV/11) and th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Reliability Estimation Of Fuzzy Failure Times Of Free Distribution And It Use To Estimate The Fuzzy Reliability Of Mosul Dam
...Show More Authors

The way used to estimate the fuzzy reliability differs according to the nature of the information of failure time which has been dealt in this research.The information of failure times has no probable distribution to explain it , in addition it has fuzzy quality.The research includes fuzzy reliability estimation of three periods ,the first one from 1986 to 2013,the second one from 2013 to 2033 while the third one from 2033 to 2066 .Four failure time have been chosen to identify the membership function of fuzzy trapezoid represented in the pervious years after taking in consideration the estimation of most researchers, proffional    geologists and the technician who is incharge of maintaining of Mosul Dam project. B

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 14 2021
Journal Name
Iraqi Journal Of Science
Highly-Performed Fuzzily-logicized Edge Detecting Algorithm for Noisy Handwritings
...Show More Authors

The main targets for using the edge detection techniques in image processing are to reduce the number of features and find the edge of image based-contents. In this paper, comparisons have been demonstrated between classical methods (Canny, Sobel, Roberts, and Prewitt) and Fuzzy Logic Technique to detect the edges of different samples of image's contents and patterns. These methods are tested to detect edges of images that are corrupted with different types of noise such as (Gaussian, and Salt and pepper). The performance indices are mean square error and peak signal to noise ratio (MSE and PSNR). Finally, experimental results show that the proposed Fuzzy rules and membership function provide better results for both noisy and noise-free

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
A Numerical Study for Solving the Systems of Fuzzy Fredholm Integral Equations of the Second Kind Using the Adomian Decomposition Method
...Show More Authors

     In this paper, the Adomian decomposition method (ADM) is successfully applied to find the approximate solutions for the system of fuzzy Fredholm integral equations (SFFIEs) and we also study the convergence of the technique. A consistent way to reduce the size of the computation is given to reach the exact solution. One of the best methods adopted to determine the behavior of the approximate solutions. Finally, the problems that have been addressed confirm the validity of the method  applied in this research using a comparison by combining numerical methods such as the Trapezoidal rule and Simpson rule with ADM.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Pakistan Journal Of Criminology
Artificial Intelligence Technology in the Field of Modern Forensic Evidence: Brain Fingerprinting as a Model
...Show More Authors

Brain Fingerprinting (BF) is one of the modern technologies that rely on artificial intelligence in the field of criminal evidence law. Brain information can be obtained accurately and reliably in criminal procedures without resorting to complex and multiple procedures or questions. It is not embarrassing for a person or even violates his human dignity, as well as gives immediate and accurate results. BF is considered one of the advanced techniques related to neuroscientific evidence that relies heavily on artificial intelligence, through which it is possible to recognize whether the suspect or criminal has information about the crime or not. This is done through Magnetic Resonance Imaging (EEG) of the brain and examining

... Show More
View Publication