conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.
In this paper, several combination algorithms between Partial Update LMS (PU LMS) methods and previously proposed algorithm (New Variable Length LMS (NVLLMS)) have been developed. Then, the new sets of proposed algorithms were applied to an Acoustic Echo Cancellation system (AEC) in order to decrease the filter coefficients, decrease the convergence time, and enhance its performance in terms of Mean Square Error (MSE) and Echo Return Loss Enhancement (ERLE). These proposed algorithms will use the Echo Return Loss Enhancement (ERLE) to control the operation of filter's coefficient length variation. In addition, the time-varying step size is used.The total number of coefficients required was reduced by about 18% , 10% , 6%
... Show MoreInternational companies are striving to reduce their costs and increase their profits, and these trends have produced many methods and techniques to achieve these goals. these methods is heuristic and the other Optimization.. The research includes an attempt to adapt some of these techniques in the Iraqi companies, and these techniques are to determine the optimal lot size using the algorithms Wagner-Whitin under the theory of constraints. The research adopted the case study methodology to objectively identify the problem of research, namely determining lot size optimal for each of the products of electronic measurement laboratory in Diyala and in light of the bottlenecks in w
... Show MoreHepatocellular carcinoma (HCC) is the third most common cause of cancer-related death. Therefore, it is critical for researchers to understand molecular biology in greater depth. In several diseases including cancer, abnormal miRNA expression has been linked to apoptosis, proliferation, differentiation, and metastasis. Many miRNAs have been studied in relation to cancer, including miR-122, miR-223, and others. Hepatitis B and C viruses are the most important global risk factors for HCC. This study is intended to test whether serum miRNAs serve as a potential biomarker for both HCC and viral infections HBV and C. The expression of miRNA in 64 serum samples was analyzed by RT-qPCR. Compared to healthy volunteers, HCC patients' sera expre
... Show MoreThis paper develops a fuzzy multi-objective model for solving aggregate production planning problems that contain multiple products and multiple periods in uncertain environments. We seek to minimize total production cost and total labor cost. We adopted a new method that utilizes a Zimmermans approach to determine the tolerance and aspiration levels. The actual performance of an industrial company was used to prove the feasibility of the proposed model. The proposed model shows that the method is useful, generalizable, and can be applied to APP problems with other parameters.
Objective : To study the effect of some risk factors like age, smoking and Diabetes mellitus (DM) among patients with
certain cardiovascular diseases (Angina pectoris and Myocardial infarction), in addition to the assessment of the Creactive
protein (CRP) in the sera of those patients.
Methodology: The study was carried out on (100) subjects who were hospitalized in the Iraqi Center of heart Diseases
in Baghdad city and were suffering from Myocardial InfarcƟon (MI) (16) and Angina Pectoris (AP) (79) or from both (5)
over a period from September 2009 to June 2010. The results of paƟents were compared with those of (30) healthy
and age-matched individuals as a control group. Data were obtained from patients who were alr
In this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .
The reconciliation of tax reconciliation is one of the legal methods used by the financial authority in Iraq, which is done with the taxpayer
The research dealt with the weakness of tax revenues for many reasons, including tax evasion, which led to the search for ways to reduce evasion to increase the tax revenue, and settlement reconciliation one of these means .
The research proceeded from the premise that the use of a more broadly settled settlement would govern the tax evasion of taxpayers.
The researchers used a series of studies and previous research, books and other sources related to the subject of research, and this was done through the theoretical framework, and the practical aspect that included the fin
... Show MoreThe aim of this paper to study the effect of the implicit factors on the entrepreneurial spirit of the students of the Algerian university. Our structural model was proposed based on the model (Shapiro et Sokol, 1982) and the model (Ajzen, 1991). We tested it on a sample of 163 university students at the University of Algiers 3. The model consists of a set of variables (the intention of contracting as a dependent variable, structural and social educational support as independent variables). The results showed that educational and social support factors affect the entrepreneurial spirit of students more than structural support. The Applied Impacts are the enhancing of knowledge capacities of university stu
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show More