The permeable reactive barrier (PRB) is one of the promising innovative in situ groundwater remediation technologies, in removing of copper from a contaminated shallow aquifer. The 1:1- mixture of waste foundry sand (WFS) and Kerbala’s sand (KS) was used for PRB. The WFS was represented the reactivity material while KS used to increase the permeability of PRB only. However, Fourier-transform infrared (FTIR) analysis proved that the carboxylic and alkyl halides groups are responsible for the sorption of copper onto WFS. Batch tests have been performed to characterize the equilibrium sorption properties of the (WFS+KS) mix in copper- containing aqueous
solutions. The sorption data for Cu+2 ions, obtained by batch experiments, have been subjected to the Langmuir and Freundlich isotherm models. The Langmuir model was chosen to describe the sorption of solute on the solid phase of PRB. COMSOL Multiphysics 3.5a based on finite element method was used for formulation the transport of copper ions in two- dimension physical model under equilibrium condition. Numerical and experimental results proved that the PRB plays a potential role in the restriction of the contaminant plume migration. A good agreement between the predicted and experimental results was recognized with mean error (ME) not exceeded 10 %.
The present study was conducted to examine toxicological effects of copper sulfate (Cu) in common carp fish (Cyprinus carpio L.). The LC50 (median lethal concentrations) of copper on Cyprinus carpio were 3.64, 3.36, 3.04, 2.65 mg/L respectively. In general, behavioral responses of the fishes exposed to copper included uncontrolled swimming, erratic movements, loss of balance, swam near the water surface with sudden jerky movements. Haematological parameters such, red blood cells (RBC), white blood cells (WBC), haemoglobin (Hb), Packed cell volume (PCV), mean cell volume (MCV) mean cell haemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) were studied. The obtained results indicated that the (RBC) and (WBC) have increas
... Show MoreMaximum values of one particle radial electronic density distribution has been calculated by using Hartree-Fock (HF)wave function with data published by[A. Sarsa et al. Atomic Data and Nuclear Data Tables 88 (2004) 163–202] for K and L shells for some Be-like ions. The Results confirm that there is a linear behavior restricted the increasing of maximum points of one particle radial electronic density distribution for K and L shells throughout some Be-like ions. This linear behavior can be described by using the nth term formula of arithmetic sequence, that can be used to calculate the maximum radial electronic density distribution for any ion within Be like ions for Z<20.
The effect of high energy radiation on the energy gap of compound semiconductor Silicon Carbide (SiC) are viewed. Emphasis is placed on those effects which can be interpreted in terms of energy levels. The goal is to develop semiconductors operating at high temperature with low energy gaps by induced permanent damage in SiC irradiated by gamma source. TEACO2 laser used for producing SiC thin films. Spectrophotometer lambda - UV, Visible instrument is used to determine energy gap (Eg). Co-60, Cs-137, and Sr-90 are used to irradiate SiC samples for different time of irradiation. Possible interpretation of the changing in Eg values as the time of irradiation change is discussed
Enhancement of heat transfer in the tube heat exchanger is studied experimentally by using discrete twisted tapes. Three different positions were selected for inserting turbulators along tube section (horizontal position by α= 00, inclined position by α= 45 0 and vertical position by α= 900). The space between turbulators was fixed by distributing 5 pieces of these turbulators with pitch ratio PR = (0.44). Also, the factor of constant heat flux was applied as a boundary condition around the tube test section for all experiments of this investigation, while the flow rates were selected as a variable factor (Reynolds number values vary from 5000 to 15000). The results s
... Show MoreIn this study, pure Co3O4 nano structure and doping with 4 %, and
6 % of Yttrium is successfully synthesized by hydrothermal method.
The XRD examination, optical, electrical and photo sensing
properties have been studied for pure and doped Co3O4 thin films.
The X-ray diffraction (XRD) analysis shows that all films are
polycrystalline in nature, having cubic structure.
The optical properties indication that the optical energy gap follows
allowed direct electronic transition calculated using Tauc equation
and it increases for doped Co3O4. The photo sensing properties of
thin films are studied as a function of time at different wavelengths to
find the sensitivity for these lights.
High photo sensitivity dope