Scheduling considered being one of the most fundamental and essential bases of the project management. Several methods are used for project scheduling such as CPM, PERT and GERT. Since too many uncertainties are involved in methods for estimating the duration and cost of activities, these methods lack the capability of modeling practical projects. Although schedules can be developed for construction projects at early stage, there is always a possibility for unexpected material or technical shortages during construction stage. The objective of this research is to build a fuzzy mathematical model including time cost tradeoff and resource constraints analysis to be applied concurrently. The proposed model has been formulated using fuzzy theory combining CPM computations, time-cost trade off analysis and resource constraint. MATLAB software has been adopted to perform ranking process, for each case, that
facilitates obtaining the optimum solution. This research infers that it is possible to perform time-cost trade off analysis with resource restriction simultaneously, which ensures achieving scheduling optimum solution reducing the effort and the time when performing these techniques in succession using traditional methods.
Abstract
The nuclear structure of 28-40Si isotopes toward neutron dripline has been investigated in framework of shell model with Skyrme-Hrtree-Fock method using certain Skyrme parameterizations. Moreover, investigations of static properties such as nuclear densities for proton, neutron, mass, and, charge densities with their corresponding rms radii, neutron skin thicknesses, binding energies, separation energies, shell gap, and pairing gap have been performed using the most recent Skyrme parameterization. The calculated results have been compared with available experimental data to identify which of these parameterizations introduced equivalent results with the ex
... Show MoreCoronavirus disease (COVID-19) is an acute disease that affects the respiratory system which initially appeared in Wuhan, China. In Feb 2019 the sickness began to spread swiftly throughout the entire planet, causing significant health, social, and economic problems. Time series is an important statistical method used to study and analyze a particular phenomenon, identify its pattern and factors, and use it to predict future values. The main focus of the research is to shed light on the study of SARIMA, NARNN, and hybrid models, expecting that the series comprises both linear and non-linear compounds, and that the ARIMA model can deal with the linear component and the NARNN model can deal with the non-linear component. The models
... Show MoreThe electric quadrupole moments for some scandium isotopes (41, 43, 44, 45, 46, 47Sc) have been calculated using the shell model in the proton-neutron formalism. Excitations out of major shell model space were taken into account through a microscopic theory which is called core polarization effectives. The set of effective charges adopted in the theoretical calculations emerging about the core polarization effect. NushellX@MSU code was used to calculate one body density matrix (OBDM). The simple harmonic oscillator potential has been used to generate the single particle matrix elements. Our theoretical calculations for the quadrupole moments used the two types of effective interactions to obtain the best interaction compared with the exp
... Show MoreThis paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
The aim of this paper is to translate the basic properties of the classical complete normed algebra to the complete fuzzy normed algebra at this end a proof of multiplication fuzzy continuous is given. Also a proof of every fuzzy normed algebra without identity can be embedded into fuzzy normed algebra with identity and is an ideal in is given. Moreover the proof of the resolvent set of a non zero element in complete fuzzy normed space is equal to the set of complex numbers is given. Finally basic properties of the resolvent space of a complete fuzzy normed algebra is given.
Grain size and shape are important yield indicators. A hint for reexamining the visual markers of grain weight can be found in the wheat grain width. A digital vernier caliper is used to measure length, width, and thickness. The data consisted of 1296 wheat grains, with measurements for each grain. In this data set, the average weight (We) of the twenty-four grains was measured and recorded. To determine measure of the length (L), width (W), thickness (T), weight (We), and volume(V). These features were manipulated to develop two mathematical models that were passed on to the multiple regression models. The results of the weight model demonstrated that the length and width of the grai
In this paper, a discrete SIS epidemic model with immigrant and treatment effects is proposed. Stability analysis of the endemic equilibria and disease-free is presented. Numerical simulations are conformed the theoretical results, and it is illustrated how the immigrants, as well as treatment effects, change current model behavior