The increasing use of plastics in various aspects of modern life resulted in the availability of enormous amount of wastes, including a negative effect on the environment and humans. So it is necessary to find solutions to deal with these wastes and ensure to use them as solutions to use in concrete mix . In this research the production of concrete containing high and low density polyethylene has been used by (5, 10, 15)% as a replacement of part of the volume of sand, so as to obtain concrete good compressive strength as well as other benefits such as improved possibility of pumping concrete and reduce the loss of concrete for workability polymer is a material that is non-absorbable of water . It is also intended to dispose of these wastes positively to achieve benefits to the environment and humans alike .
The using of waste products as a recycled material was one of the most important studies for saving money and reduces the pollution. Mortar and concrete mixes with (10, 20 and 30)% of brick, glass and tile powder as replacement by weight of cement was investigated. The concrete mixes using brick or glass as 10%replacement of cement exhibited enhancement in compressive strength about (6, 4.7 and 2.0)% and (7.2, 5.6 and 2)% at age 7, 28 and 90 days respectively compared to reference mix. The 20% replacement of glass powder also showed an increase in the compressive strength up to (8, 6.3 and 4) %at age 7,28 and 90 days respectively compared to reference mix. Finally concrete mix using (10, 20 and 30) % tile powder as replacement of cement sho
... Show MoreIn the present study, the physical characteristics of elastomer (EL) blend with natural polymers such as polyvinyl alcohol (PVA), Dexrin (D), Arabic gum (AG), and corn starch (CS) based on high-density fiberboard wood adhesives were investigated. The EL blends were prepared by dissolving AG, D, PVA, and CS in deionized water at 70 °C for 1 h under magnetic stirring continuously until the solution was clear, and blends were made with a weight of 60/40 (w/w); then were cast into a mold with a 20 cm diameter and left at room temperature for 24 h to ensure complete water removal and drying of the samples. The prepared EL and EL blend structures, adhesion strengths, roughness, wettings, and dielectric strengths, were investigated. The modifi
... Show MoreOne of the major problems in modern construction is the accumulation of construction and demolition waste; this study thus examines the consumption of waste brick in concrete based on the use of blended nano brick powder as replacement for cement and as a fine aggregate. Seven concrete mixes were developed according to ACI 211.1 using recycled waste brick. Nano powder brick at 0, 5, and 10% was used as a replacement by cement weight, with other mixes featuring 10, 20, and 30% partial replacement by volume of river sand with brick. The experimental results for replacement of cement with nano brick powder showed an enhancement in mechanical properties (compressive, flexural, and tensile strength) at 7,
The disposal of the waste material is the main goal of this investigation by transformation to high-fineness powder and producing self-consolidation concrete (SCC) with less cost and more eco-friendly by reducing the cement weight, taking into consideration the fresh and strength properties. The reference mix design was prepared by adopting the European guide. Five waste materials (clay brick, ceramic, granite tiles, marble tiles, and thermostone blocks) were converted to high-fine particle size distribution and then used as 5, 10, and 15% weight replacements of cement. The improvement in strength properties is more significant when using clay bricks compared to other activated waste
In this paper, the time-history responses of a square plan two-story reinforced concrete prototype building, considering the elastic and inelastic behavior of the materials, were studied numerically. ABAQUS software was used in three-dimensional (3D) nonlinear dynamic analysis to predict the inelastic response of the buildings. Concrete Damage Plasticity Model (CDPM) has been used to model the inelastic behavior of the reinforced concrete building under seismic excitation. The input data included geometric information, material properties, and the ground motion. The building structure was designed only for gravity load according to ACI 318 with
... Show MoreInSb alloy was prepared then InSb:Bi films have been prepared successfully by thermal evaporation technique on glass substrate at Ts=423K. The variation of activation energies(Ea1,Ea2)of d.c conductivity with annealing temperature (303, 373, 423, 473, 523 and 573)K were measured, it is found that its values increases with increasing annealing temperature. To show the type of the films, the Hall and thermoelectric power were measured. The activation energy of the thermoelectric power is much smaller than for d.c conductivity and increases with increasing annealing temperature .The mobility and carrier concentration has been measured also.
Background: Imprelon® Biostar foils are new alternative tray material that has become increasingly popular because oftheir several advantages. Also, (Duran®) is another type of Biostar foils which is used in splint therapy. This study assessed some mechanical properties of these two types Biostar sheets in comparison with some types of acrylic resins used for construction of trays and splints. Materials and Methods: A total of 150 specimens were prepared, 30 specimens for each test, 10 for each group material in order to assess some mechanical properties of the Imprelon® Biostar foil (dimension stability, surface roughness and shear bond strength of Imprelon® materialto zinc oxide impression material) and compare them to that of the oth
... Show MoreAbstract : Silicone elastomer is widely used as the material of choice for fabricating maxillofacial prosthesis. However, silicone properties are far from ideal; low tear strength, low tensile strength and insufficient elasticity are the most undesirable properties. The purpose of this study was to evaluate the effect of addition of nano SiO2filler on tear strength, tensile strength, elongation at break, hardness and color of Cosmesil M-511 HTV maxillofacial silicone elastomer. Nano SiO2was added to the silicone base in concentrations of 4%, 5% and 6% by weight. Silicone with 0% nano filler served as a control. Tear test was done according to ISO 34-1. Tensile and elongation test was done according to ISO 37. Shore A hardness test was done
... Show MoreIntrinsic viscosities have been studied for polyethylene oxide in water which has wide industrial applications. The polyethylene oxide samples had two different structures, the first one was linear and covers a wide range of molecular weight of 1, 3, 10, 20, 35, 99, 370, 1100, 4600, and 8000 kg/mol and the second one was branched and had molecular weights of 0.55 and 40 kg/mol.
Intrinsic viscosities and Huggins constants have been determined for all types and molecular weights mentioned above at 25ºC using a capillary viscometer. The values of Mark-Houwink parameters (K and a) were equal to 0.0068 ml/g and 0.67 respectively, and have not been published for this range of molecular weight in as yet.
In this paper, chip and powder copper are used as reinforcing phase in polyester matrix to form composites. Mechanical properties such as flexural strength and impact test of polymer reinforcement copper (powder and chip) were done, the maximum flexural strength for the polymer reinforcement with copper (powder and chip) are (85.13 Mpa) and (50.08 Mpa) respectively was obtained, while the maximum observation energy of the impact test for the polymer reinforcement with copper (powder and chip) are (0.85 J) and (0.4 J) respectively