Numerical simulations have been carried out on the solar chimney power plant systems. This paper gives the flow field analysis for a solar chimney power generation project located in Baghdad. The continuity, Naver-stockes, energy and radiation transfer equations have been solved and carried out by Fluent software. The governing equations are solved for incompressible, 3-D, steady state, turbulent is approximated by a standard k - model with Boussiuesq approximation to study and evaluate the performance of solar chimney power plant in Baghdad city of Iraq. The different geometric parameters of project are assumed such as collector diameter and chimney height at different working conditions of solar radiation intensity (300,450,600,750 and 900 W/m2) to gain the optimal designed structure. The results show that the change of collector diameter and chimney height has considerable effects on the performance of the system. The velocity increase when the collector diameter and chimney height increase and reach to the maximize value at H=D 12 m and when solar intensity (900 W/m2). The study shows that Iraqi weather are suitable for this system.
In a hybrid cooling solar thermal systems , a solar collector is used to convert solar energy into heat energy in order to super heat the refrigerant leaving the compressor, and this process helps in the transformation of refrigerant state from gaseous state to the liquid state in upper two-thirds of the condenser instead of the lower two-thirds such as in the traditional air-conditioning systems and this will reduce the energy needed to run the process of cooling .In this research two systems with a capacity of 2 tons each were used, a hybrid air-conditioning system with an evacuated tubes solar collector and a traditional air-conditioning system . The refrigerant of each type was R22.The comparison was in the amou
... Show MoreIn this work, a convex lens concentrating solar collector is designed and manufactured locally by using 10 convex lenses (concentrator) of a diameter 10cm and one Copper absorber tube of a diameter 12.5mm and 1mm in thickness 1m length. Two axes manual Tracking system also constructed to track the sun continuously in two directions. The experiments are made on 17th of May 2015 in climatic conditions of Baghdad. The experimental data are fed to a computer program to solve the thermal performing equation, to find efficiency and actual useful energy. Then this data is used in numerical CFD software for three different absorber diameters (12.5 mm, 18.75 mm and 25 mm). From the results that obtained the maximum the
... Show MoreSome biological aspects of the zebra mussel, Dreissena polymorpha have been studied at Al-Musayab thermal power plant ,sixty km. south west of Baghdad. Data collected during the period extended from November, 2002 to October, 2003 except for the month of April The population consisted of five age groups; O, I, II, III, and IV which have 0, 1, 2, 3 and 4 annuli respectively. The study also proved the validity of annuli readings for age and growth determination. The average annual growth rates for age groups O,I, II, III, and IV were 5.7, 5.5, 5.4, 5.2 and 5.4 respectively. Average calculated length for laboratory reared mussel was 2.5 mm compared to 5.4 mm in natural environment. Correlation coefficients were very high between age an
... Show MoreThis paper aims to study the effects of the long term solar activity on the critical frequencies of ionospheric F1 layer over Baghdad city, during the solar cycle 22, within (1988- 1995). It is found that the critical frequency of this layer is closely related to the sunspots number during the years of the solar cycle 22, at a middle latitude region of the world. The study discussed the effect of sunspot numbers and solar events on the electron densities of F1 layer, which is the most important ionospheric parameter.
Abstract
The current study presents numerical investigation of the fluid (air) flow characteristics and convection heat transfer around different corrugated surfaces geometry in the low Reynolds number region (Re<1000). The geometries are included wavy, triangle, and rectangular. The effect of different geometry parameters such as aspect ratio and number of cycles per unit length on flow field characteristics and heat transfer was estimated and compared with each other. The computerized fluid dynamics package (ANSYS 14) is used to simulate the flow field and heat transfer, solve the governing equations, and extract the results. It is found that the turbulence intensity for rectangular extended surface was larg
... Show MoreIn this paper fractional Maxwell fluid equation has been solved. The solution is in the Mettag-Leffler form. For the corresponding solutions for ordinary Maxwell fluid are obtained as limiting case of general solutions. Finally, the effects of different parameters on the velocity and shear stress profile are analyzed through plotting the velocity and shear stress profile.
In this work, we studied the effect of power variation on inductively coupled plasma parameters using numerical simulation. Different values were used for input power (750 W-1500 W), gas temperature 300K, gas pressure (0.02torr), 5 tourns of the copper coil and the plasma was produced at radio frequency (RF) 13.56 MHZ on the coil above the quartz chamber. For the previous purpose, a computer simulation in two dimensions axisymmetric, based on finite element method, was implemented for argon plasma. Based on the results we were able to obtain plasma with a higher density, which was represented by obtaining the plasma parameters (electron density, electric potential, total power, number density of argon ions, el
... Show More