The present study focused mainly on the analysis of stiffened and unstiffened composite laminated plates subjected to buckling load. Analytical, numerical and experimental analysis for different cases has been considered. The experimental investigation is to manufacture the laminates and to find mechanical properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus. The compressive test was carried to find the critical buckling load of plate. The design parameters of the laminates such as aspect ratio, thickness ratio, boundary conditions and number of stiffeners were investigated using high order shear deformation theory (HOST) and Finite element coded by ANSYS .The main conclusion was the buckling load could increase and decrease depending on the boundary conditions, thickness ratio, and, the aspect ratio and number of stiffeners of the plate.
Form the series of generalization of the topic of supra topology is the generalization of separation axioms . In this paper we have been introduced (S * - SS *) regular spaces . Most of the properties of both spaces have been investigated and reinforced with examples . In the last part we presented the notations of supra *- -space ( =0,1) and we studied their relationship with (S * - SS *) regular spaces.
Let R be a ring with identity and M be a right unitary R-module. In this paper we
introduce the notion of strongly coretractable modules. Some basic properties of this
class of modules are investigated and some relationships between these modules and
other related concepts are introduced.
The soft sets were known since 1999, and because of their wide applications and their great flexibility to solve the problems, we used these concepts to define new types of soft limit points, that we called soft turning points.Finally, we used these points to define new types of soft separation axioms and we study their properties.
The reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show MoreThis article contains a new generalizations of Ϻ-hyponormal operators which is namely (Ϻ,θ)-hyponormal operator define on Hilbert space H. Furthermore, we investigate some properties of this concept such as the product and sum of two (Ϻ, θ)-hyponormal operators, At the end the operator equation where , has been used for getting several characterization of (Ϻ,θ)-hyponormal operators.
In this study, the concept of fuzzy α-topological vector space is introduced by using the concept fuzzy α-open set , some properties of fuzzy α-topological vector spaces are proved .We also show that the space is -space iff every singleton set is fuzzy α- closed .Finally, the convex property and its relation with the interior points are discussed.
This paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.
Sustainability is a major demand and need pursued by cities in all areas of life due to the environmental, social and economic gains they provide, especially in the field of city planning and urban renewal projects that aim to integrate the past, present and future.
The research aims to evaluate the Haifa Street renewal project, and Al-Shawaka district, one of the Baghdad districts located next to Al-Karkh, was elected by comparing the sustainability indicators of urban renewal with the reality of the situation through a field survey and questionnaire form and focusing on the social and economic impacts and environmental for the project on the study area. To reach the most important conclusions and recommendations
... Show MoreThe growth curves of the children are the most commonly used tools to assess the general welfare of society. Particularity child being one of the pillars to develop society; through these tools, we can path a child's growth physiology. The Centile line is of the important tools to build these curves, which give an accurate interpretation of the information society, also respond with illustration variable age. To build standard growth curves for BMI, we use BMI as an index. LMSP method used for finding the Centile line which depends on four curves represents Median, Coefficient of Variation, Skews, and Kurtosis. These can be obtained by modeling four parameters as nonparametric Smoothing functions for the illustration variable. Ma
... Show MoreAutonomous motion planning is important area of robotics research. This type of planning relieves human operator from tedious job of motion planning. This reduces the possibility of human error and increase efficiency of whole process.
This research presents a new algorithm to plan path for autonomous mobile robot based on image processing techniques by using wireless camera that provides the desired image for the unknown environment . The proposed algorithm is applied on this image to obtain a optimal path for the robot. It is based on the observation and analysis of the obstacles that lying in the straight path between the start and the goal point by detecting these obstacles, analyzing and studying their shapes, positions and
... Show More