Fractal geometry is receiving increase attention as a quantitative and qualitative model for natural phenomena description, which can establish an active classification technique when applied on satellite images. In this paper, a satellite image is used which was taken by Quick Bird that contains different visible classes. After pre-processing, this image passes through two stages: segmentation and classification. The segmentation carried out by hybrid two methods used to produce effective results; the two methods are Quadtree method that operated inside Horizontal-Vertical method. The hybrid method is segmented the image into two rectangular blocks, either horizontally or vertically depending on spectral uniformity criterion; otherwise the block is segmented by the quadtree. Then, supervised classification is carried out by means the Fractal Dimension. For each block in the image, the Fractal Dimension was determined and used to classify the target part of image. The supervised classification process delivered five deferent classes were clearly appeared in the target part of image. The supervised classification produced about 97% classification score, which ensures that the adopted fractal feature was able to recognize different classes found in the image with high accuracy level.
Estimation of elements: Pb, Zn, Mn, Cd, and Cu, which were conducted seasonally from October-2021 till March-2022 in residential areas of Baghdad City using Geoaccumulation index (Igeo), enrichment factor ratios (EF), the factor of contamination (CF), contamination degree (Cd), index of pollution load (PLI) and index of potential ecological risk (Eif). The overall contamination factor in the research area is limited from low contamination with Cu, Mn, and Zn, moderately contaminated to very high contamination with Pb and Cd, while the assessment according to the I-geo index shows categories that vary from a slightly polluted to unpolluted by those examined heavy metals. The pollution load index indicates that the soils in some resi
... Show MoreSoil that has been contaminated by heavy metals is a serious environmental problem. A different approach for forecasting a variety of soil physical parameters is reflected spectroscopy is a low-cost, quick, and repeatable analytical method. The objectives of this paper are to predict heavy metal (Ti, Cr, Sr, Fe, Zn, Cu and Pb) soil contamination in central and southern Iraq using spectroscopy data. An XRF was used to quantify the levels of heavy metals in a total of 53 soil samples from Baghdad and ThiQar, and a spectrogram was used to examine how well spectral data might predict the presence of heavy metals metals. The partial least squares regression PLSR models performed well in pr
The study showed that there are (28) plant families present in Al-Razzaza Lake. The families are (Amaranthaceae, Amaryllidaceae, Aizoaceae, Apiaceae, Apocynaceae, Asteraceae, Brassicaceae, Boraginaceae, Capparaceae, Caryophyllaceae, Cistaceae, Colchicaceae, Convolvulaceae, Cynomoriaceae, Fabaceae, Frankeniaceae, Lamiaceae, Liliaceae, Malvaceae, Orobanchaceae, Plantaginaceae, Poaceae, Polygonaceae, Ranunculaceae, Solanaceae, Tamaricaceae,Typhaceae, Zygophyllaceae). Asteraceae family is the largest number of species found in abundance in this lake, followed by the Fabaceae family.
The study aimed to analyze the effect of meteorological factors (rainfall rate and temperature) on the change in land use in the marshes of the Al‐Majar Al‐Kabir region in southern Iraq. Satellite images from Landsat 7 for 2012 and Landsat 8 for 2022 were used to monitor changes in the land coverings, the images taken from the Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI) sensors of the Landsat satellite. Geometric correction was used to convert images into a format with precise geographic coordinates using ArcMap 10.5. The maximum likelihood classification method was used to examine satellite image data using a supervised approach, and the data were analyzed statistically. We obtained clear images of the area,
... Show MoreText categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th
... Show MoreThis research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram, and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods.