Fiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and analyzed. A discussion on the main aspects of the SLS of FRP RC is introduced. The service load that fulfills the serviceability requirements, at a cross-section level, ranges between 0.27 and 0.38 times the ultimate load for sections dimensioned to fail in concrete crushing. The determinant criterion is the deflection limitation
Nanostructured Al2O3has been applied as a protective coating against corrosion of the carbon steel (C.S) in seawater environment (3.5% NaCl) at temperatures range (298-328)K. Aluminananoparticles were deposited on carbon steel substrates by cathodic electrophoretic deposition (EPD) with ethanol as suspension medium and poly(acrylic acid) (PAA) as polymeric charging agent. Meanwhile, thesurface morphology was examined using Atomic-force microscopy (AFM). The cross-section AFM showed that the particles sizes for the Al2O3 NPs is around 60-80 nm. The anticorrosion behaviour of coated C.S was investigated in 3.5% NaCl at temperature range 298-328 K by potentiodynamic polarization measurements. Results show that using PAA in suspension coat incr
... Show MoreHighly-fluorescent Carbon Quantum Dots (CQDs) are synthesized in simple step by hydrothermal carbonization method of natural precursor such as orange juice as a carbon source. Hydrothermal method for synthesized CQDs requires simple and inexpensive equipment and raw materials, thus this method are now common synthesis method. The prepared CQDs have ultrafine size up to few nanometers and several features such as high solubility in water, low toxicity, high biocompatibility, photo-bleaching resistant, Chemical inertness and ease of functionalization which qualifies it for use in many applications such as bio-imaging, photo-labeling and photo-catalysis.
This research demonstrates the
... Show MoreAs a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen
... Show MoreThe improvement of the mechanical soil characteristics of jet grouting technique is very attractive. The jet grouted soil cement columns in soft is a complicated issue because it depends on a number of factors such as, soil nature, mixture, influence among soil and grouting materials, jetting force of nozzle, jet grouting and water flow rate, rotation and lifting speed. This paper discusses the estimation of shear strength parameters of soil-cement column (soilcrete) in soft clayey soil based on the relationships between the unconfined compressive and split tensile strength for the soilcrete and the effect of the jet grouting and water pressure in the values of cohesion and internal f
Background: Separation and deboning of artificial teeth from denture bases present a major clinical and labortory problem which affect both the patient and the dentist. The optimal bond strength of artificial teeth with denture base reinforced with nanofillers and flexible denture bases and the effect of thermo cycling should be evaluated. This study was conducted to evaluate and compare the shear bond strength of artificial teeth (acrylic and porcelain) with denture bases reinforced by 5% Zirconium oxide nanofillers and flexible bases under the effect of different surface treatments and thermo cycling and comparing the results with conventional water bath cured denture bases. Material and methods: Two types of artificial teeth; acrylic and
... Show MoreIn this research, the kinetic studies of four isoenzymes of Asprtate aminotransferase, which partially purified from the urine of chronic renal failure patients were carried out .The four isoenzymes were obeyed Michaelis-Menton's equation and the optimum concentration of their substrate (Aspartic acid) was (166.5x10-3) mole/liter,and their Km values were determined. Four isoenzymesI,II,III,IV have shown an optimum pH at 7.4.The four isoenzymes obeyed Arrhenius equation up to 37º C and their Ea and Q10 constants were determined .
Prediction of the structural response of reinforced concrete to the time-dependent, creep and shrinkage, volume changes is complex. Creep is usually determined by measuring the change, with time, in the strain of specimens subjected to a constant stress and stored under appropriate conditions. This paper brings into view the development of creep strain for four self-compacting concrete mixes: A40, AL40, B60 and BL60 (where 40 and 60 represent the compressive strength level at 28 days and L indicates to Portlandlimestone cement). Specimens were put under sustained load and exposed to controlled conditions in a creep chamber (ASTM C512). The test results showed that normal strength Portland-limestone mixes have yielded lower ultimate c
... Show MoreThe utilization of recycled brick tile powder as a replacement for conventional filler in the asphalt concrete mix has been studied in this research. This research evaluates the effectiveness of recycled brick tile powder and determines its optimum replacement level. Using recycled brick tile powder is significant from an environmental standpoint as it is a waste product from construction activities. Sixteen asphalt concrete samples were produced, and eight were soaked for a day. Samples contained 5% Bitumen, 2% to 5% brick tile powder, and conventional stone dust filler. The properties of samples were evaluated using the Marshall test. It was observed that the resistance to stiffness and deformation of asphalt concrete
... Show MoreOne-third of the total waste generated in the world is construction and demolition waste. Reducing the life cycle of building materials includes increasing their recycling and reuse by using recycled aggregates. By preventing, the need to open new aggregate quarries and reducing the amount of construction waste dumped into landfills, the use of recycled concrete aggregate in drum compacted concrete protects the environment. Four samples of PRCC were prepared for testing (compressive strength, tensile strength, flexural strength, density, water absorption, porosity) as the reference mix and (10, 15, and 20%) of fine recycled concrete aggregate as a partial replacement for fine natural aggregate by volume. The mix is designed according to
... Show More