Preferred Language
Articles
/
joe-2307
Serviceability behavior of High Strength Concrete I-beams reinforced with Carbon Fiber Reinforced Polymer bars
...Show More Authors

Fiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and analyzed. A discussion on the main aspects of the SLS of FRP RC is introduced. The service load that fulfills the serviceability requirements, at a cross-section level, ranges between 0.27 and 0.38 times the ultimate load for sections dimensioned to fail in concrete crushing. The determinant criterion is the deflection limitation

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Civil Engineering Journal
Flexural Behavior of Composite GFRP Pultruded I-Section Beams under Static and Impact Loading
...Show More Authors

In this study, the effect of glass fiber reinforced polymer (GFRP) section and compressive strength of concrete in composite beams under static and low velocity impact loads was examined. Modeling was performed and the obtained results were compared with the test results and their compatibility was evaluated.‎ Experimental tests of four composite beams were carried out, where two of them are control specimen with 20 MPa compressive strength of concrete deck slab and 50 MPa for other. Bending characteristics were affected by the strength of concrete under impact loading case, as it increased maximum impact force and damping time at a ratio of 59% and reduced the damping ratio by 47% compared to the reference hybrid beam. Under stat

... Show More
Scopus (23)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Tue May 23 2023
Journal Name
Journal Of Engineering
Serviceability Performance of Externally Prestressed Steel-Concrete Composite Girders
...Show More Authors

The behavior of externally prestressed composite beams under short term loading has been studied. A computer program developed originally by Oukaili to evaluate curvature is modified to evaluate the deflection of prestressed composite beam under flexural load. The analysis model based on the deformation compatibility of entire structure that allows to determine the full history of strain and stress distribution along cross section depth, deflection and stress increment in the external tendons .
The evaluation of curvatures for the composite beam involves iterations for computing the strains vectors at each node at any loading stage. The stress increment determined using equations depended on the member deflection at points of connecti

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jan 11 2021
Journal Name
Earth And Environmental Science
Impact Resistance of Limestone Cement Self Compacting Concrete Reinforced by Locally Available Grids
...Show More Authors

Impact strength of self-compacted concrete is a field of interest, mostly when the concrete is produced from sustainable materials. This research's main objective is to clarify the ability to use two types of Portland limestone cement (Karasta and Tasluja) in self compacted concrete under impact loading, further to the economic and environmental benefits of the limestone cement. The impact loading was applied by a low-speed test, using the drop ball on concrete. Moreover, the study reveals the resistance of the grids reinforced concrete to impact loading by using polymer grid, and steel grid reinforced concrete slabs. Mixes reinforced by steel mesh had the highest results, indicating that the steel mesh was more robust because it had

... Show More
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Research In Medical And Dental Science
Evaluation of Bond Strength of Acrylic Artificial Teeth with Unreinforced and Nano Silica Reinforced Denture Base Material after Chemical Disinfection
...Show More Authors

Soaking dentures with disinfection solutions is an effective way of keeping dentures in a healthy status; however, immersions in these solutions have a negative effect on the bond strength of denture base and denture teeth. The aim of this study was to evaluate the bond strength between denture acrylic teeth and heat-cured Poly (methyl methacrylate) denture base material (with and without nano silica) after disinfection with different chemical disinfectants for a simulated period of six months. One hundred specimens of maxillary central incisors attached to PMMA were divided into two groups; 50 specimens of PMMA without nano silica and 50 specimens of PMMA reinforced with 5 wt% of nano silica. Specimens of each group were immersed in five i

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Engineering
Parameters Affecting the Strength and Behavior of RC Dapped-End Beams: A Numerical Study
...Show More Authors

The finite element method has been used in this paper to investigate the behavior of precast reinforced concrete dapped-ends beams (DEBs) numerically. A parametric investigation was performed on an experimental specimen tested by a previous researcher to show the effect of numerous parameters on the strength and behavior of RC dapped-end beams. Reinforcement details and steel arrangement, the influence of concrete compressive strength, the effect of inclined load, and the effect of support settlement on the strength of dapped-ends beams are examples of such parameters. The results revealed that the dapped-end reinforcement arrangement greatly affects the behavior of dapped end beam. The failure load decreases by 25% when

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 09 2019
Journal Name
Engineering, Technology & Applied Science Research
Numerical Analysis of Segmental Post Tensioned Concrete Beams Exposed to High Fire Temperature
...Show More Authors

The main objective of this study is to characterize the main factors which may affect the behavior of segmental prestressed concrete beams comprised of multi segments. The 3-D finite element program ABAQUS was utilized. The experimental work was conducted on twelve simply supported segmental prestressed concrete beams divided into three groups depending on the precast segments number. They all had an identical total length of 3150mm, but each had different segment numbers (9, 7, and 5 segments), in other words, different segment lengths. To simulate the genuine fire disasters, nine beams were exposed to high-temperature flame for one hour, the selected temperatures were 300°C (572°F), 500°C (932°F) and 700°C (1292°F) as recomm

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Mon May 01 2023
Journal Name
Journal Of Building Engineering
The influence of earthquake characteristics on the seismic performance of reinforced concrete buildings in Australia with varying heights
...Show More Authors

In Australia, most of the existing buildings were designed before the release of the Australian standard for earthquake actions in 2007. Therefore, many existing buildings in Australia lack adequate seismic design, and their seismic performance must be assessed. The recent earthquake that struck Mansfield, Victoria near Melbourne elevated the need to produce fragility curves for existing reinforced concrete (RC) buildings in Australia. Fragility curves are frequently utilized to assess buildings’ seismic performance and it is defined as the demand probability surpassing capacity at a given intensity level. Numerous factors can influence the results of the fragility assessment of RC buildings. Among the most important factors that can affe

... Show More
View Publication Preview PDF
Crossref (14)
Crossref
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Studying the Effect of Water on Electrical Conductivity of Carbon Reinforced Aluminum Composite Material
...Show More Authors

The aim of this study is to understand the effect of addition carbon types on aluminum electrical conductivity which used three fillers of carbon reinforced aluminum at different weight fractions. The experimental results showed that electrical conductivity of aluminum was decreased by the addition all carbon types, also at low weight fraction of carbon black; it reached (4.53S/cm), whereas it was appeared highly increasing for each carbon fiber and synthetic graphite. At (45%) weight fraction the electrical conductivity was decreased to (4.36Scm) and (4.27Scm) for each carbon fiber and synthetic graphite, respectively. While it was reached to maximum value with carbon black. Hybrid composites were investigated also; the results exhibit tha

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 02 2018
Journal Name
International Journal Of Science And Research (ijsr)
The Compressibility of Clayey Soils Reinforced with Fiberglass
...Show More Authors

During the prior three decades numerous research works presented to investigate the behavior of reinforced soil. A, IJSR, Call for Papers, Online Journal

View Publication
Publication Date
Fri May 01 2020
Journal Name
Civil Engineering Journal
Post-Fire Behavior of Post-Tensioned Segmental Concrete Beams under Monotonic Static Loading
...Show More Authors

This paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM – E119), the temperatures of 300◦C (572◦F), 500◦C (932◦F), and 700◦C (1292◦F) were adopted. Consequently,

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref