Preferred Language
Articles
/
joe-2305
Compression of an ECG Signal Using Mixed Transforms
...Show More Authors

Electrocardiogram (ECG) is an important physiological signal for cardiac disease diagnosis. With the increasing use of modern electrocardiogram monitoring devices that generate vast amount of data requiring huge storage capacity. In order to decrease storage costs or make ECG signals suitable and ready for transmission through common communication channels, the ECG data
volume must be reduced. So an effective data compression method is required. This paper presents an efficient technique for the compression of ECG signals. In this technique, different transforms have been used to compress the ECG signals. At first, a 1-D ECG data was segmented and aligned to a 2-D data array, then 2-D mixed transform was implemented to compress the ECG data in the 2-
D form. The compression algorithms were implemented and tested using multiwavelet, wavelet and slantlet transforms to form the proposed method based on mixed transforms. Then vector quantization technique was employed to extract the mixed transform coefficients. Some selected records from MIT/BIH arrhythmia database were tested contrastively and the performance of the
proposed methods was analyzed and evaluated using MATLAB package. Simulation results showed that the proposed methods gave a high compression ratio (CR) for the ECG signals comparing with other available methods. For example, the compression of one record (record 100) yielded CR of 24.4 associated with percent root mean square difference (PRD) of 2.56% was achieved.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 01 2013
Journal Name
Brain Research Bulletin
A note on the probability distribution function of the surface electromyogram signal
...Show More Authors

View Publication
Scopus (86)
Crossref (91)
Scopus Clarivate Crossref
Publication Date
Sat Jun 01 2019
Journal Name
International Journal Of Computer Science And Mobile Computing
Hierarchal Polynomial Coding of Grayscale Lossless Image Compression
...Show More Authors

Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Engineering, Ije Transactions B: Applications
Adaptive Polynomial Coding of Multi-Base Hybrid Compression
...Show More Authors

Scopus (5)
Scopus
Publication Date
Thu Feb 07 2019
Journal Name
Journal Of The College Of Education For Women
EFFICIENCY SPIHT IN COMPRESSION AND QUALITY OF IMAGE
...Show More Authors

Image compression is an important tool to reduce the bandwidth and storage
requirements of practical image systems. To reduce the increasing demand of storage
space and transmission time compression techniques are the need of the day. Discrete
time wavelet transforms based image codec using Set Partitioning In Hierarchical
Trees (SPIHT) is implemented in this paper. Mean Square Error (MSE), Peak Signal
to Noise Ratio (PSNR) and Maximum Difference (MD) are used to measure the
picture quality of reconstructed image. MSE and PSNR are the most common picture
quality measures. Different kinds of test images are assessed in this work with
different compression ratios. The results show the high efficiency of SPIHT algori

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2016
Journal Name
Ieee Transactions On Neural Systems And Rehabilitation Engineering
Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering
...Show More Authors

View Publication
Scopus (145)
Crossref (145)
Scopus Clarivate Crossref
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Estimation Mean Wind Speed in Iraq By Using Parametric And Nonparametric Linear Mixed Models
...Show More Authors

In this research, the one of the most important model and widely used in many and applications is linear mixed model, which widely used to analysis the longitudinal data that characterized by the repeated measures form .where estimating linear mixed model by using two methods (parametric and nonparametric) and used to estimate the conditional mean and marginal mean in linear mixed model ,A comparison between number of models is made to get the best model that will represent the mean wind speed in Iraq.The application is concerned with 8 meteorological stations in Iraq that we selected randomly and   then we take a monthly data about wind speed over ten years Then average it over each month in corresponding year, so we g

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Compression-based Data Reduction Technique for IoT Sensor Networks
...Show More Authors

Energy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the

... Show More
View Publication Preview PDF
Scopus (41)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Tue Apr 11 2023
Journal Name
Sensors
EEG Signal Complexity Measurements to Enhance BCI-Based Stroke Patients’ Rehabilitation
...Show More Authors

The second leading cause of death and one of the most common causes of disability in the world is stroke. Researchers have found that brain–computer interface (BCI) techniques can result in better stroke patient rehabilitation. This study used the proposed motor imagery (MI) framework to analyze the electroencephalogram (EEG) dataset from eight subjects in order to enhance the MI-based BCI systems for stroke patients. The preprocessing portion of the framework comprises the use of conventional filters and the independent component analysis (ICA) denoising approach. Fractal dimension (FD) and Hurst exponent (Hur) were then calculated as complexity features, and Tsallis entropy (TsEn) and dispersion entropy (DispEn) were assessed as

... Show More
View Publication
Scopus (27)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Fri Aug 23 2013
Journal Name
International Journal Of Computer Applications
Image Compression based on Quadtree and Polynomial
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Wed Jul 25 2018
Journal Name
International Journal Of Engineering Trends And Technology
Fixed Predictor Polynomial Coding for Image Compression
...Show More Authors

View Publication
Crossref (1)
Crossref