Electrocardiogram (ECG) is an important physiological signal for cardiac disease diagnosis. With the increasing use of modern electrocardiogram monitoring devices that generate vast amount of data requiring huge storage capacity. In order to decrease storage costs or make ECG signals suitable and ready for transmission through common communication channels, the ECG data
volume must be reduced. So an effective data compression method is required. This paper presents an efficient technique for the compression of ECG signals. In this technique, different transforms have been used to compress the ECG signals. At first, a 1-D ECG data was segmented and aligned to a 2-D data array, then 2-D mixed transform was implemented to compress the ECG data in the 2-
D form. The compression algorithms were implemented and tested using multiwavelet, wavelet and slantlet transforms to form the proposed method based on mixed transforms. Then vector quantization technique was employed to extract the mixed transform coefficients. Some selected records from MIT/BIH arrhythmia database were tested contrastively and the performance of the
proposed methods was analyzed and evaluated using MATLAB package. Simulation results showed that the proposed methods gave a high compression ratio (CR) for the ECG signals comparing with other available methods. For example, the compression of one record (record 100) yielded CR of 24.4 associated with percent root mean square difference (PRD) of 2.56% was achieved.
Image compression is very important in reducing the costs of data storage transmission in relatively slow channels. Wavelet transform has received significant attention because their multiresolution decomposition that allows efficient image analysis. This paper attempts to give an understanding of the wavelet transform using two more popular examples for wavelet transform, Haar and Daubechies techniques, and make compression between their effects on the image compression.
Many recent satellite image compression methods depends on removing the spectral and spatial redundancies within image only , such these methods known as intra-frame(image) coding such as predictive and transformed based techniques , but these contributions needs a hard work in order to improve the compression performance also most of them are applied on individual data. The other trend is to exploit the temporal redundancy between the successive satellite images captured for the same area from different views, different sensors, or at different times, which will be much correlated and removing this redundancy will improve the compression performance and this principle known as inter-frame(image) coding .In this paper, a latest powerful
... Show MoreA common approach to the color image compression was started by transform
the red, green, and blue or (RGB) color model to a desire color model, then applying
compression techniques, and finally retransform the results into RGB model In this
paper, a new color image compression method based on multilevel block truncation
coding (MBTC) and vector quantization is presented. By exploiting human visual
system response for color, bit allocation process is implemented to distribute the bits
for encoding in more effective away.
To improve the performance efficiency of vector quantization (VQ),
modifications have been implemented. To combines the simple computational and
edge preservation properties of MBTC with high c
Abstract: Narrow laser pulses have been essential sources in optical communication system. High data rate optical communication network system demands compressed laser source with unique optical property. In this work using pulsed duration (9) ns, peak power 1.2297mW, full width half maximum (FWHM) 286 pm, and wavelength center 1546.7 nm as compression laser source. Mach Zehnder interferometer (MZI) is built by considering two ways. First, polarization maintaining fiber (PMF) with 10 cm length is used to connect between laser source and fiber brag grating analysis (FBGA). Second, Nested Mach Zehnder interferometer (NMZI) was designed by using three PMFs with 10 cm length. These three Fibers are splicing to sing
... Show MoreIn this effort, we define a new class of fractional analytic functions containing functional parameters in the open unit disk. By employing this class, we introduce two types of fractional operators, differential and integral. The fractional differential operator is considered to be in the sense of Ruscheweyh differential operator, while the fractional integral operator is in the sense of Noor integral. The boundedness and compactness in a complex Banach space are discussed. Other studies are illustrated in the sequel.
Numerical Investigation was done for steady state laminar mixed convection and thermally and hydrodynamic fully developed flow through horizontal rectangular duct including circular core with two cases of time periodic boundary condition, first case on the rectangular wall while keeping core wall constant and other on both the rectangular duct and core walls. The used governing equations are continuity momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C.) methods. The Finite Difference approach with the Line Successive Over Relaxation (LSOR) method is used to obtain all the computational results the (B.F.C.) method is used to generate th
... Show MoreSince there is no market for bond issuance by companies in the Iraqi market and the difficulty of borrowing, companies must resort to proprietary financing to finance their investments. However, in the framework of the literature of financial management, the type of financing used by the company sends signals to investors and therefore reflected on the market value. Therefore, the problem of the study revolves around the variables of the study (Equity financing within the framework the signal theory, price of common stock in the Iraqi market).
The study aims to verify the impact of the capital increase through the issuance of new stock on the price of
... Show MoreA soliton is a solitary wave whose amplitude, shape, and velocity are conserved after a collision with another soliton. Solitons, in general, manifest themselves in a large variety of wave/particle systems in nature: practically in any system that possesses both dispersion (in time or space) and nonlinearity. Solitons have been identified in optics, plasmas, fluids, condensed matter, particle physics, and astrophysics. Yet over the past decade, the forefront of soliton research has shifted to neuroscience. The Soliton model in optical fiber is a recently developed model that attempts to explain how signals are propagated within optical fiber without dispersion. In this research, it proposes that the signals travel along the Single Mode O
... Show More
Mixed convection heat transfer to air inside an enclosure is investigated experimentally. The bottom wall of the enclosure is maintained at higher temperature than that of the top wall which keeps in oscillation motion, whereas the left and right walls are well insulated. The differential temperature of the bottom and top walls changed several times in order to accurately characterize the temperature distribution over a considerable range of Richardson number. Adjustable aspect ratio box was built as a test rig to determine the effects of Richardson number and aspect ratio on the flow behavior of the air inside the enclosure. The flow fields and the average Nusselt number profiles were presented in this wo
... Show MoreRaw satellite images are considered high in resolution, especially multispectral images captured by remote sensing satellites. Hence, choosing the suitable compression technique for such images should be carefully considered, especially on-board small satellites, due to the limited resources. This paper presents an overview and classification of the major and state-of-the-art compression techniques utilized in most space missions launched during the last few decades, such as the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform (DWT)-based compression techniques. The pros and cons of the onboard compression methods are presented, giving their specifications and showing the differences among them to provide uni
... Show More