The one-dimensional, cylindrical coordinate, non-linear partial differential equation of transient heat conduction through a hollow cylindrical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical
function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant thermal conductivity. It is found that the characteristics of the
thermal insulation material and the pressure value between its particles have a major effect on the rate of heat transfer and temperature profile.
In this work, chemical and thermal treatment were used to enhance silica extract on the purity of rice husk and to reduce the impurities associated with the extraction of silica. The thermal degradation of rice husk was studied. The characteristics and thermal degradation behavior of rice husk which investigated using thermogravimetric analyzer (TGA). Hydrochloric acid was used to soak the rice husk and the study of leaching influence is followed by XRF tests for samples before and after the combustion process. Acid treatment and combustion method seem to have a clear effect on silica purity. The pyrolysis processes were carried out at Laboratory temperature up to 650 oC in the presence of nitrogen gas flowing at 150 ml/min. The effect o
... Show MoreAbstract
Theoretical and experimental methodologies were assessed to test curved beam made of layered composite material. The maximum stress and maximum deflection were computed for each layer and the effect of radius of curvature and curve shape on them. Because of the increase of the use of composite materials in aircraft structures and the renewed interest in these types of problems, the presented theoretical assessment was made using three different approaches: curved beam theory and an approximate 2D strength of material equations and finite element method (FEM) analysis by ANSYS 14.5 program for twelve cases of multi-layered cylindrical shell panel differs in fibe
... Show MoreNumerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhan
... Show MoreThe platforms of social networking sites, with their distinctive communication and technological features, create a social movement that led to the establishment of a new pattern of communication in a modern context. This allows the users on the internet to carry out many social interactions based on the interests and commonalities among them. Algerian women have a share of this digital presence by representing their views and discussing their issues on several sites like Facebook, for example.
In this research, we have analyzed the pages of Algerian women on Facebook site to find out the most important issues addressed by Algerian women so that we can organize their concerns in the digital channels and discover their different orie
To evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were
... Show MorePorous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O
This study deals with the subject of art criticism by using Erwin Panofsky's theory to analyze a few Saudi artists' works. The study aims to identify Panofsky's theory and provide criticism of some Saudi artworks using it. The importance of the study is that it enriches the field of art criticism in the Kingdom of Saudi Arabia and helps critics and artists in using Panofsky’s theory to analyze artworks.
The study sample consists of six artworks produced in 2021 by six contemporary Saudi artists. In the theoretical section, the study dealt with several topics; first, is art criticism, the second part presents Panofsky’s theory with its three stages, the final part deals with the beginning of Saudi art until present time and its
This research deals with the study of top soil electrical conductive regions located within Baghdad City. The research included measuring the dissolved soil material extraction Electrical Conductivity (EC) with an aqueous solution for the top (0-30 cm) soil layer of the study area. As the electrical conductivity values increase by increasing the amount of dissolved salts in principle, we can consider that the aim of this research is to predict the amount and distribution of (soil contamination with salts) which is represented by the (Salt Index), this factor calculated for each soil representative sample taken from the region with a depth of (30 cm). Laboratory (EC) test values measured by the use of solutions (EC) digital meter for the ex
... Show MoreIn the present work, tetracycline (TC) was removed from a simulated wastewater through a new photo-anodic oxidation process with a rotating graphite cylinder anode. The effects of current density, pH, rotation speed, and NaCl addition were evaluated. The results confirmed that increasing the current density results in improving the removal of TC. However, increasing the current density beyond 5 mA/cm2 had little effect on TC removal. Results revealed that TC removal using photoanodic oxidation can be achieved at high performance with an initial pH of 5. Increasing or decreasing pH beyond this value has a negative effect on TC removal. Increasing rotation speed gave better performance for TC removal due to the increase in mass t
... Show More