The one-dimensional, cylindrical coordinate, non-linear partial differential equation of transient heat conduction through a hollow cylindrical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical
function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant thermal conductivity. It is found that the characteristics of the
thermal insulation material and the pressure value between its particles have a major effect on the rate of heat transfer and temperature profile.
This work studies with produce of light fuel fractions of gasoline, kerosene and gas oil from treatment of residual matter that will be obtained from the solvent extraction process as by product from refined lubricate to improve oil viscosity index in any petroleum refinery. The percentage of this byproduct is approximately 10% according to all feed (crude oil) in the petroleum refinery process. The objective of this research is to study the effect of the residence time parameter on the thermal cracking process of the byproduct feed at a constant temperature, (400 °C). The first step of this treatment is the thermal cracking of this byproduct material by a constructed batch reactor occupied with control device at a selective range of re
... Show MoreThis work reports the study of heat treatment effect on the structural, morphological, optical and electrical properties of poly [3-hexylthiophene] and its blend with [6,6]-phenyl C61 butyric acid methyl ester ( P3HT:PC61BM). X-ray diffraction (XRD) measurements show that the crystallinity of the films increased with annealing. The evaluation of surface roughness and morphology was investigated using atomic force microscope (AFM), and field emission scanning microscope(FESEM). The optical properties were emphasized a strong optical absorption of P3HT compared with the blend. Hall effect measurement was used to study the electrical properties which revealed there is an increase in the electrical conductivity and Hall mobility of th
... Show MorePolyimide/polyaniline nanofiber composites were prepared by in situ polymerization with various weight percentages of polyaniline (PANI) nanofibers. X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), proved the successful preparation of PANI nanofiber composite films. In addition, thermal stability of PI/PANI nanofiber composites was superior relative to PI, having 10 % gravimetric loss in the range of 623 °C to 671 °C and glass transition temperature of 289 °C to 297 °C. Furthermore, the values of the loss tangent tanδ and AC conductivity σAC of the nanocomposite films were notably higher than those of pure polyimide. The addition of 5 wt.% to 15 wt.% PANI
Copper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreIn this work Study effect of annealing temperature on the Structure
of a-Se and electrical properties of a-Se/c-Si hetrojunction have been
studied.The hetrojunction fabricated by deposition of a-Se film on c-
Si using thermal evaporation.
Electrical properties of a-Se/ c-Si heterojunction include I-V
characteristics, in dark at different annealing temperature and C-V
characteristics are considered in the present work.
C-V characteristics suggested that the fabricated diode was
abrupt type, built in potential determined by extrapolation from
1/C2-V curve. The built - in potential (Vbi) for the Se/ Si System
was found to be increase from 1.21 to 1.62eV with increasing of
annealing temperature
Effect of the thermal annealing at 400oC for 2 hours and Argon laser radiation for half hour on the optical properties of AgAlS2 thin films, prepared on glass slides by chemical spray pyrolysis at 360oC with (0.18±0.05) μm thickness .The optical characteristics of the prepared thin films have been investigated by UV/Vis spectrophotometer in the wavelength range (300 – 1100)nm .The films have a direct allow electronic transition with optical energy (Eg) values decreased from (2.25) eV for untreated thin films to (2.10) eV for the annealed films and to (2.00) eV for the radiated films. The maximum value of the refractive index (n) for all thin films are given about (2.6). Also the extinction coefficient (K) and the real and imaginary d
... Show MoreAzo-Schiff base compounds (L1 and L2) have been synthesized from the reaction of m-hydroxy benzoic acid with 1,5-dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethylimino]-2-phenyl-2,3- dihydro-1H-pyrazol-4-ylamine and with 3-[2-(1H-indol-3-yl)-ethylimino]-1,5-dimethyl-2-phenyl- 2,3-dihydro-1H-pyrazol-4-ylamine. The free ligands and their complexes were characterized based on elemental analysis, determination of metal, molar conductivity, (1H, 13C) NMR, UV–vis, FT-IR, mass spectra and thermal analysis (TGA). The molar conductance data revealed that all the complexes are non-electrolytes. The study of complex formation via molar ratio in DMF solution has been investigated and results were consistent to those found in the solid complexes with a rat
... Show MoreThe physical, the thermal and the mechanical properties of Nano-composites, that consisted of Polyprime EP epoxy that reinforced by multi-walled carbon nanotubes (MWCNTs), have been studied. Various loading ratios, 0.1, 0.5, and 1 wt. %of MWCNT shave been infused into epoxy by a magnetic stirrer and then the hardener mixed with the mthat supplied with the epoxy. All sample shave been cutting using CNC machine. Tensile test, three-point bending, hardness tests, lee's disk, differential scanning calorimetry, water absorption and dielectric and electrical conductivity test were utilized on unfilled, MWCNT-filled epoxy to identify the loading effect on the properties of materials. Scanning electron microscopy (SEM) was used to determine the
... Show More