Aluminum alloys widely use in production of the automobile and the aerospace because
they have low density, attractive mechanical properties with respect to their weight, better
corrosion and wear resistance, low thermal coefficient of expansion comparison with traditional
metals and alloys. Recently, researchers have shifted from single material to composite materials
to reduce weight and cost, improve quality, and high performance in structural materials.
Friction stir processing (FSP) has been successfully researched for manufacturing of metal
matrix composites (MMCs) and functional graded materials (FGMs), find out new possibilities
to chemically change the surfaces. It is shown that the technique of FSP is very promising to
modify the microstructure of strengthened metal matrix composite materials. There has the
benefit of decline in distortion and flaw of material when FSP uses instead of other
manufacturing processes. The aim of the present work is to give a review of technology of (FSP)
as a method to produce the aluminium matrix composite, and conclusions of this review will be
demonstrated.
This paper attempted to study the effect of cutting parameters (spindle speed and feed rate) on delamination phenomena during the drilling glass-polyester composites. Drilling process was done by CNC machine with 10 mm diameter of high-speed steel (HSS) drill bit. Taguchi technique with L16 orthogonal layout was used to analyze the effective parameters on delamination factor. The optimal experiment was no. 13 with spindle speed 1273 rpm and feed 0.05 mm/rev with minimum delamination factor 1.28. &
... Show MoreIn the reverse engineering approach, a massive amount of point data is gathered together during data acquisition and this leads to larger file sizes and longer information data handling time. In addition, fitting of surfaces of these data point is time-consuming and demands particular skills. In the present work a method for getting the control points of any profile has been presented. Where, many process for an image modification was explained using Solid Work program, and a parametric equation of the profile that proposed has been derived using Bezier technique with the control points that adopted. Finally, the proposed profile was machined using 3-aixs CNC milling machine and a compression in dimensions process has been occurred betwe
... Show MoreIn many video and image processing applications, the frames are partitioned into blocks, which are extracted and processed sequentially. In this paper, we propose a fast algorithm for calculation of features of overlapping image blocks. We assume the features are projections of the block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary matrices that virtually extends the original image and makes it possible to avoid a time-consuming computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they are independent of the image itself. We validated experimentally th
... Show MorePavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit
... Show MoreExperimental investigations had been done in this study to demonstrate the effect of natural particles used as a reinforcement material to unsaturated polyester resin. The tensile test and water absorption were investigated according to (ASTM D638) and (ASTM D570), respectively. The influence of sunflower husk and pomegranate husk particles, used as a reinforcement material, on the tensile strength, Young's modulus and water absorption with different weight fraction (3%, 7% and 10%) and particle grain size (50µm, 100 µm and 150 µm), has been investigated. The water absorption of polymer composites was studied by measuring the specimen weight before and after immersion in water for one hundred days. In the experiments of tensile test,
... Show MoreObjectives: To review the failure rates of molar tubes and the effect of molar tube base design, adhesive type, and bonding technique on the failure rates of molar tubes. Data: The revolution of molar bonding greatly impacted fixed orthodontic appliance treatment by reducing chair-side time and improving patient comfort. Even with the many advantages of molar bonding, clinicians sometimes hesitate to use molar tubes due to their failure rates. Sources: Internet sources, such as Pubmed and Google Scholar. Study selection: studies testing the bond failure rate of molar tubes. Conclusions: The failure rate of the molar tubes can be reduced and the bond strength of the molar tubes can be improved by changing the design of the molar tube base
... Show More
Cressa cretica (Shuwwayl) is a halophytic that belongs to Convolvulaceae, naturally grown in the Middle East including Iraq. Traditionally the plant is used as a paste for sore treatment, also it is used for fever, jaundice, and other illness. Regarding nonclinical use it is used as goat, sheep, and camel feed also as an oil source. Flavonoids including quercetin, kamepferol, apigenin, and their glycosides, phenolic acid as chlorogenic acid, and phytosterols mainly ?–sitosterol were the most important phytochemicals that were detected in this halophyte. Crude ethanolic, methanolic extracts and ethyl acetate fraction of the areal parts were used in clinical studies and demonstrated various effe
... Show MoreThis paper explores VANET topics: architecture, characteristics, security, routing protocols, applications, simulators, and 5G integration. We update, edit, and summarize some of the published data as we analyze each notion. For ease of comprehension and clarity, we give part of the data as tables and figures. This survey also raises issues for potential future research topics, such as how to integrate VANET with a 5G cellular network and how to use trust mechanisms to enhance security, scalability, effectiveness, and other VANET features and services. In short, this review may aid academics and developers in choosing the key VANET characteristics for their objectives in a single document.