Methods of speech recognition have been the subject of several studies over the past decade. Speech recognition has been one of the most exciting areas of the signal processing. Mixed transform is a useful tool for speech signal processing; it is developed for its abilities of improvement in feature extraction. Speech recognition includes three important stages, preprocessing, feature extraction, and classification. Recognition accuracy is so affected by the features extraction stage; therefore different models of mixed transform for feature extraction were proposed. The properties of the recorded isolated word will be 1-D, which achieve the conversion of each 1-D word into a 2-D form. The second step of the word recognizer requires, the application of 2-D FFT, Radon transform, the 1-D IFFT,and 1-D discrete wavelet transforms were used in the first proposed model, while discrete multicircularlet transform was used in the second proposed model. The final stage of the proposed models includes the use of the dynamic time warping algorithm for recognition tasks. The performance of the proposed systems was evaluated using forty different isolated Arabic words that are recorded fifteen times in a studio for speaker dependant. The result shows recognition accuracy of (91% and 89%) using discrete wavelet transform type Daubechies (Db1) and (Db4) respectively, and the accuracy score between (87%-93%) was achieved using
discrete multicircularlet transform for 9 sub bands.
This study proposed a biometric-based digital signature scheme proposed for facial recognition. The scheme is designed and built to verify the person’s identity during a registration process and retrieve their public and private keys stored in the database. The RSA algorithm has been used as asymmetric encryption method to encrypt hashes generated for digital documents. It uses the hash function (SHA-256) to generate digital signatures. In this study, local binary patterns histograms (LBPH) were used for facial recognition. The facial recognition method was evaluated on ORL faces retrieved from the database of Cambridge University. From the analysis, the LBPH algorithm achieved 97.5% accuracy; the real-time testing was done on thirty subj
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreFacial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) f
... Show MoreFace recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima
... Show Moreالوصف Mixed ligand complexes of Cu (II), Co (II) and Zn (II) with 2-((4-(1-(4-chlorophenylimino) ethyl) phenylimino) methyl) phenol (L) and histidine (His) have been prepared and diagnosed by ¹H and13 C NMR, FT-IR and electronic spectral data, thermal gravimetric, molar conductance and metal analysis measurements. The ligand (L) shows a bidentate nature and the coordination occurs through N and O atoms of imine group and phenol group respectively whereas (His) behave as tridentate ligand, coordinating through the-NH2 group and carboxylate oxygen group and N atoms of imidazole ring. The analytical studies for three complexes have shown octahedral structure. The anticancer activity was screened against human cancer cell such Follicular
... Show MoreImage compression is one of the data compression types applied to digital images in order to reduce their high cost for storage and/or transmission. Image compression algorithms may take the benefit of visual sensitivity and statistical properties of image data to deliver superior results in comparison with generic data compression schemes, which are used for other digital data. In the first approach, the input image is divided into blocks, each of which is 16 x 16, 32 x 32, or 64 x 64 pixels. The blocks are converted first into a string; then, encoded by using a lossless and dictionary-based algorithm known as arithmetic coding. The more occurrence of the pixels values is codded in few bits compare with pixel values of less occurre
... Show MoreThe method of measurement dosimetry in neutron – gamma field by using CaSo4 : Dy (PTFE) disc which has a diameter of 1.3mm and thickness of 0.2mm and using hydrogenated material as a converters of neutron to recoil protons (n-p) reaction, the discs were irradiated by neutron source (241Am-Be) with flux of 4.5?105 n/cm2s for different time to obtain different dose. The TL signals, which we have been obtained by using the converters, are increases to 71%. So we can resolve the neutron and gamma in mixed field.
In this research, we highlight the most important research related to the mixed ligand complexes of the drug trimethoprim (TMP), and for the past 7 years where this drug has been used as a chelating ligand and gives stability to the complexes with ions of metal elements where these complexes, prepared and diagnosed, and for some research the bacterial activity was studied against different types of bacteria.
In this research, we highlight the most important research related to the mixed ligand complexes of the drug trimethoprim (TMP), and for the past 7 years where this drug has been used as a chelating ligand and gives stability to the complexes with ions of metal elements where these complexes, prepared and diagnosed, and for some research the bacterial activity was studied against different types of bacteria