Methods of speech recognition have been the subject of several studies over the past decade. Speech recognition has been one of the most exciting areas of the signal processing. Mixed transform is a useful tool for speech signal processing; it is developed for its abilities of improvement in feature extraction. Speech recognition includes three important stages, preprocessing, feature extraction, and classification. Recognition accuracy is so affected by the features extraction stage; therefore different models of mixed transform for feature extraction were proposed. The properties of the recorded isolated word will be 1-D, which achieve the conversion of each 1-D word into a 2-D form. The second step of the word recognizer requires, the application of 2-D FFT, Radon transform, the 1-D IFFT,and 1-D discrete wavelet transforms were used in the first proposed model, while discrete multicircularlet transform was used in the second proposed model. The final stage of the proposed models includes the use of the dynamic time warping algorithm for recognition tasks. The performance of the proposed systems was evaluated using forty different isolated Arabic words that are recorded fifteen times in a studio for speaker dependant. The result shows recognition accuracy of (91% and 89%) using discrete wavelet transform type Daubechies (Db1) and (Db4) respectively, and the accuracy score between (87%-93%) was achieved using
discrete multicircularlet transform for 9 sub bands.
The fingerprinting DNA method which depends on the unique pattern in this study was employed to detect the hydatid cyst of Echinococcus granulosus and to determine the genetic variation among their strains in different intermediate hosts (cows and sheep). The unique pattern represents the number of amplified bands and their molecular weights with specialized sequences to one sample which different from the other samples. Five hydatitd cysts samples from cows and sheep were collected, genetic analysis for isolated DNA was done using PCR technique and Random Amplified Polymorphic DNA reaction(RAPD) depending on (4) random primers, and the results showed:
... Show MoreThe aim of this study was the isolation and characterization of Klebsiella pneumonia from 160 urine samples of patients hospitalized in children hospital in AL-Ramadi Proveng during October 2006 to May 2008. Also determination of the susceptibility of K. pneumoniae against a number of antibiotics to explain resistance mechanism for these antibiotics by using interpretative reading to avoid using it in treatment. Forty two isolates were detected as K. pneumoniae with resistance to a number of antibiotics . These isolates were tested to determine their sensitivities to a wide number of antibiotics which included β-lactum group and aminoglicosides
... Show MoreOne hundred samples of root canal bacteria were isolated from patients teeth with primary and secondary infected root canal from all the ages . Biochemical and microscopial tests were done for identification of these isolates. Twenty four isolates were confirmed as E. faecalis species by using these tests. Genetic diagnosis for the all isolates was also done by using polymerase chain reaction ( PCR ). Thirty two isolates were confirmed to belong to E. faecalis species by using this test.
Surface electromyography (sEMG) and accelerometer (Acc) signals play crucial roles in controlling prosthetic and upper limb orthotic devices, as well as in assessing electrical muscle activity for various biomedical engineering and rehabilitation applications. In this study, an advanced discrimination system is proposed for the identification of seven distinct shoulder girdle motions, aimed at improving prosthesis control. Feature extraction from Time-Dependent Power Spectrum Descriptors (TDPSD) is employed to enhance motion recognition. Subsequently, the Spectral Regression (SR) method is utilized to reduce the dimensionality of the extracted features. A comparative analysis is conducted between the Linear Discriminant Analysis (LDA) class
... Show MoreMarket share is a major indication of business success. Understanding the impact of numerous economic factors on market share is critical to a company’s success. In this study, we examine the market shares of two manufacturers in a duopoly economy and present an optimal pricing approach for increasing a company’s market share. We create two numerical models based on ordinary differential equations to investigate market success. The first model takes into account quantity demand and investment in R&D, whereas the second model investigates a more realistic relationship between quantity demand and pricing.
In this study, a brand-new double transform known as the double INEM transform is introduced. Combined with the definition and essential features of the proposed double transform, new findings on partial derivatives, Heaviside function, are also presented. Additionally, we solve several symmetric applications to show how effective the provided transform is at resolving partial differential equation.
Copula modeling is widely used in modern statistics. The boundary bias problem is one of the problems faced when estimating by nonparametric methods, as kernel estimators are the most common in nonparametric estimation. In this paper, the copula density function was estimated using the probit transformation nonparametric method in order to get rid of the boundary bias problem that the kernel estimators suffer from. Using simulation for three nonparametric methods to estimate the copula density function and we proposed a new method that is better than the rest of the methods by five types of copulas with different sample sizes and different levels of correlation between the copula variables and the different parameters for the function. The
... Show More