Reservoir fluids properties are very important in reservoir engineering computations such as material balance calculations, well testing analyses, reserve estimates, and numerical reservoir simulations. Isothermal oil compressibility is required in fluid flow problems, extension of fluid properties from values at the bubble point pressure to higher pressures of interest and in material balance calculations (Ramey, Spivey, and McCain). Isothermal oil compressibility is a measure of the fractional change in volume as pressure is changed at constant temperature (McCain). The most accurate method for determining the Isothermal oil compressibility is a laboratory PVT analysis; however, the evaluation of exploratory wells often require an estimate of the fluid behavior prior to obtaining a representative reservoir sample. Also, experimental data is often unavailable.Empirical correlations are often used for these purposes.
This paper developed a new mathematical model for calculating undersaturated oil compressibility using 129 experimentally obtained data points from the PVT analyses of 52 bottom hole fluid samples from Mishrif reservoirs in the southern Iraqi oil fields. The new undersaturated oil compressibility correlation developed using Statistical Analysis System (SAS) by applying nonlinear multiple regression method. It was found that the new correlation estimates undersaturated oil compressibility of Mishrif reservoir crudes in the southern Iraqi oil fields much better than the published ones. The average absolute relative error for the developed correlation is 7.16%.
Results of the current study demonstratedthat out of eighty-three isolatesof Pseudomonas aeruginosa,only twenty-five isolateswere resistant to five different antibiotics (of different classes) that were consequentlyconsideredmultidrug resistant isolates.These isolates developed variable susceptibility toward Eucalyptuscamaldulensisleavesoil (ECO). GC-MS analysis of ECOrevealed that the aromatic oil eugenol is the major constituent.However, the most frequent MIC was 0.39 µg/ml, while the lowest frequent MIC was 3.125 µg/ml.Moreover, this oil at ½ MIC (0.195µg/ml) increased the gene expression of exoU. Itis concluded from the outcomes of the studythat ECOmay cause severe damagewhen used to treat infections caused by P. aeruginosa.
... Show MoreThe question about the existence of correlation between the parameters A and m of the Paris function is re-examined theoretically for brittle material such as alumina ceramic (Al2O3) with different grain size. Investigation about existence of the exponential function which fit a good approximation to the majority of experimental data of crack velocity versus stress intensity factor diagram. The rate theory of crack growth was applied for data of alumina ceramics samples in region I and making use of the values of the exponential function parameters the crack growth rate theory parameters were estimated.
The permeability determination in the reservoirs that are anisotropic and heterogeneous is a complicated problem due to the limited number of wells that contain core samples and well test data. This paper presents hydraulic flow units and flow zone indicator for predicting permeability of rock mass from core for Nahr-Umr reservoir/ Subba field. The Permeability measurement is better found in the laboratory work on the cored rock that taken from the formation. Nahr-Umr Formation is the main lower cretaceous sandstone reservoir in southern of Iraq. This formation is made up mainly of sandstone. Nahr-Umr formation was deposited on a gradually rising basin floor. The digenesis of Nahr-Umr sediments is very important du
... Show MoreIn this work, measurements of activity concentration of naturally occurring radioactive materials (NORM) isotopes and their related hazard indices for several materials such as crude oil, sludge and water in Ahdeb oil fields in Waste governorate using high pure germanium coaxial detection technique. The average values for crude oil samples were174.72Bq/l, 43.46Bq/l, 355.07Bq/l, 264.21Bq/l, 122.52nGy/h, 0.7138, 1.1861, 0.601 mSv/y, 0.1503mSv/y and 1.8361 for Ra-226, Ac-228, K-40, Ra eq, D, H-external and H-internal respectively. According to the results; the ratio between 238U to 232Th was 4, which represents the natural ratio in the crust earth; therefore, one can be strongly suggested that the geo-stricture of the
... Show MoreDrag has long been identified as the main reason for the loss of energy in fluid transmission like pipelines and other similar transportation channels. The main contributor to this drag is the viscosity as well as friction against the pipe walls, which will results in more pumping power consumption.
The aim in this study was first to understand the role of additives in the viscosity reduction and secondly to evaluate the drag reduction efficiency when blending with different solvents.
This research investigated flow increase (%FI) in heavy oil at different flow rates (2 to 10 m3/hr) in two pipes (0.0381 m & 0.0508 m) ID By using different additives (toluene and naphtha) with different concent
... Show MoreThis research was aimed to evaluate activity of Rosemary volatile oil and Nisin A in vivo and on B. cereus isolated from some canned meat products in vitro. The results showed that the activity of Rosemary volatile oil (2000 µg/ml) and Nisin A (350 µg\ml) attained to 27 and 19 mm inhibitory zone diameter respectively in well diffusion method. The viable plate count from samples of canned meat treated with effective concentration of Rosemary volatile oil and Nisin A were examined. The samples with Rosemary volatile oil was not showed any CFU/g after 9 days of preservation while sample with Nisin A and control observed 49 and 45 CFU/g respectively. In vivo experiment on mice, two weeks after oral dose of Rosemary volatile oil (2000
... Show MoreAn investigation was conducted for dewaxing of lubricating oil fraction by urea to reduce the pour point.In this study mixture of 45 % methyl ethyl ketone (MEK) and 55 % toluene was used as a solvent. The studied variables are mixing time (10-70 min), solvent to oil volume ratio (0.5:1- 2:1), urea to wax weight ratio (2- 6) and constant mixing speed 1500 rpm. By analysis of the experimental results, the best operating conditions achieved are mixing time 40 min, solvent/oil 2:1 volume ratio, and urea/wax 4:1 weight ratio. At these conditions the pour point of the lubricating oil decreases from 24 ° C to -13 °C.