In order to reduce the environmental pollution associated with the conventional energy sources and to achieve the increased global energy demand, alterative and renewable sustainable energy sources need to be developed. Microbial fuel cells (MFCs) represent a bio-electrochemical innovative technology for pollution control and a simultaneous sustainable energy production from biodegradable, reduced compounds. This study mainly considers the performance of continuous up flow dual-chambers MFC
fueled with actual domestic wastewater and bio-catalyzed with anaerobic aged sludge obtained from an aged septic tank. The performance of MFCs was mainly evaluated in terms of COD reductions and electrical power output. Results revealed that the COD removal efficiency up to 89% was obtained for wastewaters having an average initial COD concentration of 350 mg/L. Stabilized power outputs were clearly observed achieving a maximum value of 170 mW/ m2
.
This study was conducted in the poultry field of Al-Mustansiriya University/ Baghdad, to show the effect of adding different levels 0, 1, 5 and 10% of the fenugreek seeds in the rations containing many contaminated microbes on the productive performance of broilers. 150-day-old rose meat was used with a 41 average weight (gm), were randomly allocated to 4 treatments with 3 replicates, and for each treatment 15 chicks per repetition: 0, 1, 5, and 10% (T0-T3), respectively. The results of this study showed that fenugreek seeds contain good amounts of protein, fat, ash and carbohydrates, which are 24.92, 8.82, 3.08 and 54.28 respectively. Fenugreek seeds also have high levels of tannins, coumarins and flavones, followed by saponins,
... Show MoreAnaerobic digestion is a technology widely used for treatment of organic waste for biogas production as a source for clean energy. In this study, poultry house wastes (PHW) material was examined as a source for biogas production. The effects of inoculum addition, pretreatment of the substrate, and temperature on the biogas production were taken into full consideration. Results revealed that the effect of inoculum addition was more significant than the alkaline pretreatment of raw waste materials. The biogas recovery from inoculated waste materials exceeds its production from wastes without inoculation by approximately 70% at mesophilic conditions. Whereby, the increase of biogas recovery from pretreated wastes was by 20% higher than its
... Show MoreA microbial desalination cell (MDC) is a new approach to bioelectrochemical systems. It provides a more sustainable way to electrical power production, saltwater desalination, and wastewater treatment at the same time. This study examined three operation modes of the MDC: chemical cathode, air cathode, and biocathode MDC, to give clear sight of this system's performance. The experimental work results for these three modes were recorded as power densities generation, saltwater desalination rates, and COD removal percentages. For the chemical cathode MDC, the power density was 96.8 mW/m2, the desalination rate was 84.08 ppm/hr, and the COD removal percentage was 95.94%. The air cathode MDC results were different
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreStudy of the development of an activated carbon nanotube catalyst for alkaline fuel cell technology. Through the prepared carbon nanotubes catalyst by an electrochemical deposition technique. Different analytical approaches such as X-ray diffraction (XRD) to determine the structural properties and Scanning Electron Microscope (SEM), were used to characterize, Mesh stainless steel catalyst substrate had an envelope structure and a large surface area. Voltages were also obtained at 1.83 V and current at 3.2 A of alkaline fuel cell. In addition, study the characterization of the electrochemical parameters.
In this paper had been studied the characterization of the nanocatalyst (NiO) Mesh electrodes. For fuel cell. The catalyst is prepared and also the electrodes The structural were studied through the analysis of X-ray diffraction of the prepared nanocatalyst for determining the yielding phase and atomic force microscope to identify the roughness of prepared catalyst surface, Use has been nanocatalyst led to optimization of cell voltage, current densities & power for a fuel cell.