In this study, the effect of design parameters such as pipe diameter, pipe wall thickness, pipe material and the effect of fluid velocity on the natural frequency of fluid-structure interaction in straight pipe conveying fully developed turbulent flow were investigate numerically,analytically and experimentally. Also the effect of support conditions, simply-simply and clamped-clamped was investigated. Experimentally, pipe vibrations were characterized by accelerometer mounted on the pipe wall. The natural frequencies of vibration were analyzed by using Fast Fourier Transformer (FFT). Five test sections of two different pipe diameters of 76.2
mm and 50.8 mm with two pipe thicknesses of 3.7 mm and 2.4 mm and two pipe materials,stainless steel and polyvinyl chloride PVC in the range of Reynolds numbers from 4*104 to 5*105 were studied. Mathematically, the governing continuity and momentum equations were solved numerically by using the finite volume method to compute the characteristics of two dimensional turbulent flow. The dynamics of a pipe conveying fluid was described by the Transfer Matrix Method (TMM) which is provides a numerical technique for solving the equations of pipe vibrations for simply-simply and clamped supports. The results showed that,the natural frequencies increase with pipe diameter increase and the natural frequencies slightly increases with pipe wall thickness increase. Also, the natural frequencies in clamped-clamped supported pipe are higher than those in simply-simply supported pipe.
النظام السياسي اليمني : دراسة في المتغيرات الداخلية
An experiment was conducted in the plastic house of the Botanical Garden in the Department of Biology, College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad during one growth season. The experiment included the study of the effect of three concentrations of citric acid (0, 75, 150) mg. L-1 and four concentrations of malic acid (0, 50, 100, 150) mg. L-1 and their interaction in some of the growth and yield parameters of the broad bean plant, plant height, dry weight, number of leaves, total chlorophyll content, the number of flowers and pods and the weight of the pod. The experiment was carried out in full random design (4× 3) and with three duplicates, the results showed a significant effect of citric and malic aci
... Show MoreThe study aimed to determine of some Optimum conditions for bioremediation and removing of seven mineral elements included hexavalent chromium, nickel, cobalt, cadmium, lead, iron and copper as either alone or in group by living and heat treated cells of baker’s yeast Saccharomyces cerevisiae. The dried baker's yeast from Aldnaamaya China Company was used in this study. Biochemical tests was used to ensure yeast belonging to S. cerevisiae and then used to remove the mentioned mineral elementes under different conditions which included incubation period, pH, and temperature. It was found that the best of these conditions was 60 minutes for duration of incubation, 6 for pH, 25 ᵒC for temperature. During the study the behavior of living
... Show MoreAbstract
Objective(s): To determine the interventional program effectiveness on nurses' practices concerning diet instructions for orthopedic patients treated by internal fixation devices.
Methodology: A quantitative approach using prexperimental design is conducted to determine the effectiveness of an interventional program on nurses’ practices regarding orthopedic patients diet instruction and teaching after internal fixation implemented. The study has started from 1st of April 2022 and ended on 15th of December, 2022. The conduction of the study in Misan governorate / Al-Zaharawy surgical hospital. A non-probability, purpo
... Show MoreZnO nanostructures were synthesized by hydrothermal method at different temperatures and growth times. The effect of increasing the temperature on structural and optical properties of ZnO were analyzed and discussed. The prepared ZnO nanostructures were characterized by X-ray diffraction (XRD), UV–Vis. absorption spectroscopy (UV–Vis.), Photoluminescence (PL), and scanning electron microscopy (SEM). In this work, hexagonal crystal structure prepared ZnO nanostructures was observed using X-ray diffraction (XRD) and the average crystallite size equal 14.7 and 23.8 nm for samples synthesized at growth time 7 and 8 hours respectively. A nanotubes-shaped surface morphology was found using scanning electron microscopy (SEM). The optic
... Show MoreZinc oxide (ZnO) nanoparticles were synthesized using a modified hydrothermal approach at different reaction temperatures and growth times. Moreover, a thorough morphological, structural and optical investigation was demonstrated using scanning electron microscopy (SEM), x-ray diffraction (XRD), ultra-violate visible light spectroscopy (UV-Vis.), and photoluminescence (PL) techniques. Notably, SEM analysis revealed the occurrence of nanorods-shaped surface morphology with a wide range of length and diameter. Meanwhile, a hexagonal crystal structure of the ZnO nanoparticles was perceived using XRD analysis and crystallite size ranging from 14.7 to 23.8 nm at 7 and 8 ℎ𝑟𝑠., respectively. The prepared ZnO samples showed good abso
... Show MoreNumerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhan
... Show MoreThe energy expectation values for Li and Li-like ions ( , and ) have been calculated and examined within the ground state and the excited state in position space. The partitioning technique of Hartree-Fock (H-F) has been used for existing wave functions.