Exposure of reinforced concrete buildings to an accidental fire may result in cracking and loss in the bearing capacity of their major components, columns, beams, and slabs. It is a challenge for structural engineers to develop efficient retrofitting techniques that enable RC slabs to restore their structural integrity, after being exposed to intense fires for a long period of time. Experimental
investigation was carried out on twenty one slab specimens made of self compacting concrete, eighteen of them are retrofitted with CFRP sheets after burning and loading till failure while three of them (which represent control specimens) are retrofitted with CFRP sheet after loading till failure without burning. All slabs had been tested in a simply supported span and subjected to two-point loading. The main variables were the effect of different temperature levels (300ºC, 500ºC and 700ºC),different concrete compressive strength (20MPa, 30MPa and 40MPa) and cooling rate (gradually and sudden cooling conditions) on the behavior of retrofitted one way slabs .The structural response of each slab specimen was investigated in terms of load-deflection behavior, ultimate load carrying
capacity and mode of failure. The experimental results, generally, indicate that slabs retrofitted using CFRP sheets restored flexural strength values nearly equal to or lower than those of the reference slabs, the retrofitted slabs exhibited larger deflection than the control slabs at ultimate loads. Retrofitted control slabs after loading regained about 93.95% to 97.92% of their original load capacity
(before retrofitting) while the other slabs regained from 42.% to 84% of the load capacity of the original control specimens. Most of the tested slabs failed by concrete crushing at mid span and partial debonding of certain retrofitting systems was also observed for a few cases
Many tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.
Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.
A nano recycled glass p
Implementation of Warm Mix Asphalt concrete (WMA) is getting global acceptance due to the restrictions for protecting the environment and the requirements to reduce fuel consumption. In this investigation, two WMA mixtures have been prepared in the laboratory using medium curing cutback (MC-30) and Cationic emulsion asphalt. Hot Mix Asphalt (HMA) was also prepared for comparison. The cylinder specimens (63.5mm) in height and (101.6mm) in diameter were constructed from the mixtures and subjected to indirect tensile strength test to determine the Tensile Strength Ratio (TSR). The cylinder specimens of (101.6mm) in height and (101.6mm) in diameter were also constructed from those mixtures and subjected to static compressive
... Show MoreThe structural behavior of Segmental Precast Post-tensioned Reinforced Concrete (SPPRC) beams largely depends on the behavior of the joints that connect between the segments. In this research, series of static tests were carried out to investigate the behavior of full-scale SPPRC beams with different types of epoxy-glued joint configurations; multi-key joint, single key, and plain key joint. The reference specimen was monolithically casted beam and the other specimens were segmental beams with five segments for each one. The general theme from the experimental results reflects an approximate similarity in the behavior of the four beams with slight differences. Due to the high tensile strength of the used epoxy in comparison to concr
... Show MoreHall effect measurements have been made on a-As2Te3 thin films different thickness film in the range (200-350) nm. The Hall mobility in a-As2Te3 thin films decreases with increasing annealing temperature but the carrier concentration increases. When increasing the film thickness increases the Hall mobility decreases, while the carrier concentration increases.
This search aim to measure Hardness for Epoxy resin and for unsaturated Polyester resin as base materials for composite Hybrid and the materials used is Hybrid fiber Carbon-Kevlar. The Hand Lay-up method was used to manufacture plates of Epoxy resin (EP) and unsaturated Polyester EP,UPE backed by Hybrid fiber (Carbon-Kevlar) and with small volume fraction 5,10 and 15 for every there are Layer of fibers (1,2 and 3). The hardness test was count for material EP, UPE resin and there composites and that we notice that the Hardness (HB) decreased with increase of temperatures.
The interactions of drug amoxicillin with maltose or galactose solutions with a variation of temperature have been discussed by taking in the volumetric and viscometric procedures. Physical properties [densities (ρ) and viscosities (η)] of amoxicillin (AMOX) aqueous solutions and aqueous solutions of two type saccharides (maltose and galactose 0.05m) have been measured at T = (298.15, 303.15 and 308.15) K under atmospheric pressure. The apparent molar volume (ϕv cm3mole-1) has been evaluated from density data and fitted to a Redlich-Mayer equation. The empirical parameters of the Mayer-Redlich equation and apparent molar volume at infinite dilution ذv were explicated in terms of interactions from type solute-solvent and solute
... Show MoreWarm dark matter (WDM) models offer an attractive alternative to the current cold dark matter (CDM) cosmological model. We present a novel method to differentiate between WDM and CDM cosmologies, namely, using weak lensing; this provides a unique probe as it is sensitive to all of the “matter in the beam,” not just dark matter haloes and the galaxies that reside in them, but also the diffuse material between haloes. We compare the weak lensing maps of CDM clusters to those in a WDM model corresponding to a thermally produced 0.5 keV dark matter particle. Our analysis clearly shows that the weak lensing magnification, convergence, and shear distributions can be used to distinguish
The mechanical properties and microstructure of hot-rolled steel are critical in determining its performance in industrial applications, particularly when exposed to elevated temperatures. This study examines the effects of varying temperatures and soaking times on these properties through a series of controlled experiments. The primary objective was to optimize the key response parameters, including tensile strength, yield strength, and elongation, by analyzing the influence of temperature and time. A full factorial design approach was used, applying the desirability function theory to explore all possible combinations and identify optimal processing conditions. The experimental results showed that the soaking time played a critica
... Show More
