In this study, the feasibility of Forward–Reverse osmosis processes was investigated for treating the oily wastewater. The first stage was applied forward osmosis process to recover pure water from oily wastewater. Sodium chloride (NaCl) and magnesium chloride (MgCl2) salts were used as draw solutions and the membrane that was used in forward osmosis (FO) process was cellulose triacetate (CTA) membrane. The operating parameters studied were: draw solution concentrations (0.25 – 0.75 M), oil concentration in feed solution (FS) (100-1000 ppm), the temperature of FS and draw solution (DS) (30 - 45 °C), pH of FS (4-10) and the flow rate of both DS and FS (20 - 60 l/h). It was found that the water flux and oil concentration in FS increase by increasing the concentration of draw solutions, the flow rate of FS and the temperature for a limit (40oC), then, the water flux and oil concentration decrease with increasing the temperature because of happening the internal concentration polarization phenomenon. By increasing the oil concentration in FS and the flow rate of the DS, the water flux and oil concentration in FS decreased, while it had a fluctuated behavior with increasing pH
of oily wastewater. It was found also that MgCl2 gives water flux higher than NaCl. So the values of resistance to solute diffusion within the membrane porous support layer were 55.93 h/m and 26.21 h/m for NaCl and MgCl2 respectively. The second stage was applied reverse osmosis process using polyamide (thin film composite (TFC)) membrane for separating the fresh water from a diluted (NaCl) solution using different parameters such as draw solution concentration (0.08–0.16 M), feed flow rate (20–40 l/h).
The purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to m
... Show MoreIn our work present, the application of strong-Lensing observations for some gravitational lenses have been adopted to study the geometry of the universe and to explain the physics and the size of the quasars. The first procedure was to study the geometrical of the Lensing system to determine the relation between the redshift of the gravitational observations with its distances. The second procedure was to compare between the angular diameter distances "DA" calculated from the Euclidean case with that from the Freedman models, then evaluating the diameter of the system lens. The results concluded that the phenomena are restricted to the ratio of distance between lens and source with the diameter of the lens noticing.
At the end of 2019, a new form of Coronavirus (later dubbed COVID-19) emerged in China and quickly spread to other regions of the globe. Despite the virus’s unique and unknown characteristics, it is a widely distributed infectious illness. Finding the geographical distribution of the virus transmission is therefore critical for epidemiologists and governments in order to respond to the illness epidemic rapidly and effectively. Understanding the dynamics of COVID-19’s spatial distribution can help to understand the pandemic’s scope and effects, as well as decision-making, planning, and community action aimed at preventing transmission. The main focus of this study is to investigate the geographic patterns of COVID-19 disseminat
... Show MoreA new approach presented in this study to determine the optimal edge detection threshold value. This approach is base on extracting small homogenous blocks from unequal mean targets. Then, from these blocks we generate small image with known edges (edges represent the lines between the contacted blocks). So, these simulated edges can be assumed as true edges .The true simulated edges, compared with the detected edges in the small generated image is done by using different thresholding values. The comparison based on computing mean square errors between the simulated edge image and the produced edge image from edge detector methods. The mean square error computed for the total edge image (Er), for edge regio
... Show MoreWe present mid-infrared imaging observations of the debris disk around one of the main sequence star Epsilon Eridani in the Q-band at (20.5 µm) and (17.6 µm). The dust that produces emission in debris disk is spatially resolved in the inner region of the debris disk of Epsilon Eridani at distance approximately between 1.4 - 4 AU.
In this paper, some Bayes estimators of the reliability function of Gompertz distribution have been derived based on generalized weighted loss function. In order to get a best understanding of the behaviour of Bayesian estimators, a non-informative prior as well as an informative prior represented by exponential distribution is considered. Monte-Carlo simulation have been employed to compare the performance of different estimates for the reliability function of Gompertz distribution based on Integrated mean squared errors. It was found that Bayes estimators with exponential prior information under the generalized weighted loss function were generally better than the estimators based o