A multivariate multisite hydrological data forecasting model was derived and checked using a case study. The philosophy is to use simultaneously the cross-variable correlations, cross-site correlations and the time lag correlations. The case study is of two variables, three sites, the variables are the monthly rainfall and evaporation; the sites are Sulaimania, Dokan, and Darbandikhan.. The model form is similar to the first order auto regressive model, but in matrices form. A matrix for the different relative correlations mentioned above and another for their relative residuals were derived and used as the model parameters. A mathematical filter was used for both matrices to obtain the elements. The application of this model indicates it's capability of preserving the statistical characteristics of the observed series. The preservation was checked by using (t-test) and (F-test) for the monthly means and variances which gives 98.6% success for means and 81% success for variances. Moreover for the same data two well-known models were used for the sake of comparison with the developed model. The single-site singlevariable auto regressive first order and the multi-variable single-site models. The results of the three models were compared using (Akike test) which indicates that the developed model is more successful ,since it gave minimum (AIC) value for Sulaimania rainfall, Darbandikhan rainfall, and Darbandikhan evaporation, while Matalas model gave minimum (AIC) value for Sulaimania evaporation and Dokan rainfall, and Markov AR (1) model gave minimum (AIC) value for only Dokan evaporation).However, for these last cases the (AIC) given by the developed model is slightly greater than the minimum corresponding value.
Amplitude variation with offset (AVO) analysis is an 1 efficient tool for hydrocarbon detection and identification of elastic rock properties and fluid types. It has been applied in the present study using reprocessed pre-stack 2D seismic data (1992, Caulerpa) from north-west of the Bonaparte Basin, Australia. The AVO response along the 2D pre-stack seismic data in the Laminaria High NW shelf of Australia was also investigated. Three hypotheses were suggested to investigate the AVO behaviour of the amplitude anomalies in which three different factors; fluid substitution, porosity and thickness (Wedge model) were tested. The AVO models with the synthetic gathers were analysed using log information to find which of these is the
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreIn this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the
... Show MoreLafutidine (LAF) a newly developed histamine H2-receptor antagonist with absorption window makes it a good candidate to be prepared as floating drug delivery system. The current study involves formulation and in- Vitro evaluation of lafutidine as floating microspheres. Different formulation variables that affect the physicochemical properties of the prepared microspheres besides to the drug release behavior were investigated. Fourteen formulas were prepared by emulsion (o/w) solvent evaporation method using Ethyl cellulose (EC) as the polymeric matrix and tween 80 (TW80) as an emulsifying agent. The prepared formulas were evaluated for their percentage buoyancy (%), Percentage yield (%) and Entrapment efficiency (EE %). The results obt
... Show MoreThe study titled “The role of the social media sites of Iraqi satellite channels in prioritizing the public” is a field study for the public of Dhi Qar.
The emergence of the social networking sites we are currently experiencing has undergone radical and important changes in the role of the mass media in light of the growth and rapid spread of modern technologies Or the so-called new media، which led the media organizations to create satellite channels on the social networks، which led to bypass the traditional lines between the public and media institutions with the public gain the possibility of The purpose of the research is to determine the habits and patterns of public use of the social media sites of the Iraqi satellite cha
In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreSemi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.
We compare two methods Bayesian and . Then the results were compared using MSe criteria.
A simulation had been used to study the empirical behavior for the Logistic model , with different sample sizes and variances. The results using represent that the Bayesian method is better than the at small samples sizes.
... Show More