The usage of remote sensing techniques in managing and monitoring the environmental areas is increasing due to the improvement of the sensors used in the observation satellites around the earth. Resolution merge process is used to combine high resolution one band image with another one that have low resolution multi bands image to produce one image that is high in both spatial and spectral resolution. In this work different merging methods were tested to evaluate their enhancement capabilities to extract different environmental areas; Principle component analysis (PCA), Brovey, modified (Intensity, Hue ,Saturation) method and High Pass Filter methods were tested and subjected to visual and statistical comparison for evaluation. Both visual and statistical comparison showed that High Pass Filter method have highest visual enhancement and highly maintained the quantitative information of the original image, Modified (Intensity, Hue, Saturation) method showed good visual and statistical results in comparison with PCA and Brovey method which had the lower results respectively.
Criteria to be met in selecting the obtimal areas for generating alternative electric energy from wind
Road-side dust samples were collected during August in 2020 from selected areas of, Al-Rusafa, Baghdad, Iraq. A sedimentological and mineralogical analysis of street dust was conducted. Three areas were selected to study street dusts which are Al-Baladitat, Al-Obaidi and Ziona. The laboratory analyses were done in the Department of Geology, College of Science, University of Baghdad. The heavy metal contents were determined in the roadside dust using XRF Method. It was found that the dust is of muddy texture, and is believed to be transmitted with the various storms blowing on Baghdad or by the wheels of Cars. The results of mineralogical investigation revealed that the dust samples composed of quartz, feldspar, calcite, gypsum and s
... Show MoreIn this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems.
... Show MoreFerritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m
... Show MoreAbstract: In recent times, global attention has increasingly focused on the critical issue of environmental sustainability, owing to escalating environmental degradation exacerbated by the utilization of green spaces and technological innovation. This phenomenon necessitates thorough examination, prompting the present study to scrutinize the impact of various factors, namely green spaces, technological innovation, environmental taxes, renewable energy consumption (REC), inflation, and economic growth (EG), on environmental sustainability within the context of Iraq. Secondary data extracted from the World Development Indicators (WDI) spanning the period from 1991 to 2022 served as the foundation for this investigation. Methodologically, the
... Show MoreLand Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that
... Show MoreBecause the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat
... Show MoreIn this paper, we studied the resolution of Weyl module for characteristic zero in the case of partition (8,7,3) by using mapping Cone which enables us to get the results without depended on the resolution of Weyl module for characteristic free for the same partition.
Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a
... Show More