Finite element modeling of transient temperature distribution is used to understand physical phenomena occurring during the dwell (penetration) phase and moving of welding tool in friction stir welding (FSW) of 5mm plate made of 7020-T53 aluminum alloy at 1400rpm and 40mm/min.
Thermocouples are used in locations near to the pin and under shoulder surface to study the welding tool penetration in the workpiece in advance and retreate sides along welding line in three positions (penetrate (start welding) , mid, pullout (end welding)).
Numerical results of ANSYS 12.0 package are compared to experimental data including axial load measurements at different tool rotational speeds (710rpm.900rpm.1120rpm and 1400rpm) Based on the experimental records of transient temperature at several specific locations of thermocouples during the friction stir welding process the temperatures are higher on the advancing side (629.2 oK) than the retreating side (605 oK) along welding line and temperature in the top of workpiece under tool shoulder is higher(645 oK) than bottom (635.79oK). The results of the simulation are in good agreement with that of experimental results. The peak temperature obtained was 70% of the melting point of parent metal.
The novel groups of organic chromophores containing triphenylamine (TPA) (ATP-I to ATP-IV) have been constructed by structural modification of electron donors with substitution biphenyl and bipyridine rings inserting a π-linkage. Density functional theory (DFT) and time-dependent type of it (TD-DFT) have been operated to study results of donating ability of TPA and spacer on absorption, geometrical, photovoltaic, and energetic attributes of these sensitizers. Structural attributes have been revealed that incorporation of TPA, acceptor and π bridge include a perfect coplanar conformation in TPA-III. Based on frequency computations and ground-state optimization, bandgap (Eg) energy, ELUMO, EHOMO have been determined. For enlightening maximu
... Show MoreNuclear shell model is adopted to calculate the electric quadrupole moments for some Calcium isotopes 20Ca (N = 21, 23, 25, and 27) in the fp shell. The wave function is generated using a two body effective interaction fpd6 and fp space model. The one body density matrix elements (OBDM) are calculated for these isotopes using the NuShellX@MSU code. The effect of the core-polarizations was taken through the theory microscopic by taking the set of the effective charges. The results for the quadrupole moments by using Bohr-Mottelson (B-M) effective charges are the best. The behavior of the form factors of some Calcium isotopes was studied by using Bohr-Mottelson (B-M) effective charges.
In this paper, some Bayes estimators of the reliability function of Gompertz distribution have been derived based on generalized weighted loss function. In order to get a best understanding of the behaviour of Bayesian estimators, a non-informative prior as well as an informative prior represented by exponential distribution is considered. Monte-Carlo simulation have been employed to compare the performance of different estimates for the reliability function of Gompertz distribution based on Integrated mean squared errors. It was found that Bayes estimators with exponential prior information under the generalized weighted loss function were generally better than the estimators based o
The aim of this study is to estimate the parameters and reliability function for kumaraswamy distribution of this two positive parameter (a,b > 0), which is a continuous probability that has many characterstics with the beta distribution with extra advantages.
The shape of the function for this distribution and the most important characterstics are explained and estimated the two parameter (a,b) and the reliability function for this distribution by using the maximum likelihood method (MLE) and Bayes methods. simulation experiments are conducts to explain the behaviour of the estimation methods for different sizes depending on the mean squared error criterion the results show that the Bayes is bet
... Show MoreImage processing is an important source for the image
analytical in order to get variable parameters such as the
intensity .In present work it has been found a relation between the tensity and number of pixd in the image , and from this relation we have got in this paper the inten
... Show MoreThe monitoring weld quality is increasingly important because great financial savings are possible because of it, and this especially happens in manufacturing where defective welds lead to losses in production and necessitate time consuming and expensive repair. This research deals with the monitoring and controllability of the fusion arc welding process using Artificial Neural Network (ANN) model. The effect of weld parameters on the weld quality was studied by implementing the experimental results obtained from welding a non-Galvanized steel plate ASTM BN 1323 of 6 mm thickness in different weld parameters (current, voltage, and travel speed) monitored by electronic systems that are followed by destructive (Tensile and Bending) and non
... Show MoreIn this study, the performance of the adaptive optics (AO) system was analyzed through a numerical computer simulation implemented in MATLAB. Making a phase screen involved turning computer-generated random numbers into two-dimensional arrays of phase values on a sample point grid with matching statistics. Von Karman turbulence was created depending on the power spectral density. Several simulated point spread functions (PSFs) and modulation transfer functions (MTFs) for different values of the Fried coherent diameter (ro) were used to show how rough the atmosphere was. To evaluate the effectiveness of the optical system (telescope), the Strehl ratio (S) was computed. The compensation procedure for an AO syst
... Show MoreThe nanocrystalline porous silicon (PS) films are prepared by electrochemical etching ECE of p -type silicon wafer with current density (10mA/cm ) and etching times on the formation nano -sized pore array with a dimension of around different etching time (10 and 20) min. The films were characterized by the measurement of XRD, atomic force microscopy properties (AFM). We have estimated crystallites size from X -Ray diffraction about nanoscale for PS and AFM confirms the nanometric size Chemical fictionalization during the electrochemical etching show on the surface chemical composition of PS. The atomic force microscopy investigation shows the rough silicon surface, with increasing etching process (current density and etching time) porous st
... Show MoreIn this work, porous Silicon structures are formed with photochemical etching process of n-type Silicon(111) wafers of resistivity (0.02.cm) in hydrofluoric acid (HF) of concentration (39%wt) under light source of tungeston halogen lamp of (100 Watt) power. Samples were anodized in a solution of 39%HF and ethanol at 1:1 for 15 minutes. The samples were realized on n-type Si substrates Porous Silicon layers of 100m thickness and 30% of porousity. Frequency dependence of conductivity for Al/PSi/Si/Al sandwich form was studied. A frequency range of 102-106Hz was used allowing an accurate determination of the impedance components. Their electronic transport parameters were determined using complex impedance measurements. These measu
... Show More