The removal of boron from aqueous solution was carried out by electrocoagulation (EC) using magnesium electrodes as anode and stainless steel electrodes as cathode. Several operating parameters on the removal efficiency of boron were investigated, such as initial pH, current density, initial boron ion concentration, NaCl concentration, spacing between electrodes, electrode material, and presence of carbonate concentration. The optimum removal efficiency of 91. 5 % was achieved at a current density of 3 mA/cm² and pH = 7 using (Mg/St. St. ) electrodes, within 45 min of operating time. The concentration of NaCl was o. 1 g/l with a 0.5cm spacing between the electrodes. First and second order rate equation were applied to study adsorption kinetics. The adsorption process
follows second order kinetic model with good correlation. The energy consumption was evaluated for the optimum operating conditions. It was in the range of 1.296 to 1.944 Kwh/m3 . The overall expected increase in the operating cost of water treatment using membrane desalination facility (for example) will be about 20%.
Carbon nanoparticles are prepared by sonication using carbon black powder. The surface morphology of carbon black (CB) and carbon nanoparticles (CNPs) is investigated using scanning electron microscopy (SEM). The particles size ranges from 100 nm to 400 nm for CB and from 10 nm to 100 nm for CNPs. CNPs and CB are mixed with silicon glue of different ratios of 0.025, 0.2, 0.05, and 0.1 to synthesis films. The optical properties of the prepared films are investigated through reflectance and absorbance analyses. The ratio of 0.05 for CNPs and CB is the best for solar paint because of its higher solar water heater efficiency and is then added to the silicon glue . Temperature of cold water and temperature of hot water in storage tank were ta
... Show MoreA new panel method had been developed to account for unsteady nonlinear subsonic flow. Two boundary conditions were used to solve the potential flow about complex configurations of airplanes. Dirichlet boundary condition and Neumann formulation are frequently applied to the configurations that have thick and thin surfaces respectively. Mixed boundary conditions were used in the present work to simulate the connection between thick fuselage and thin wing surfaces. The matrix of linear equations was solved every time step in a marching technique with Kelvin's theorem for the unsteady wake modeling. To make the method closer to the experimental data, a Nonlinear stripe theory which is based on a two-dimensional viscous-inviscid interac
... Show MoreFusarium wilt causes economic losses on tomatoes every year. Thus, a variety of chemicals have been used to combat the disease. Pesticides have been effective in managing the disease, but they keep damaging the environment. Recently, eco-friendly approaches have been used to control plant diseases. This study aimed to achieve an environmentally safe solution using biological agents to induce systemic resistance in tomato plants to control Fusarium wilt disease caused by Fusarium oxysporum f.sp. lycopersici (FOL) in the greenhouse. The pathogen (FOL) has been molecularly confirmed and the biological agents have been isolated from the Iraqi environment. The effectiveness of the biological agents has been tested and confirmed. Results showed t
... Show MoreIn this paper, the reliability and scheduling of maintenance of some medical devices were estimated by one variable, the time variable (failure times) on the assumption that the time variable for all devices has the same distribution as (Weibull distribution.
The method of estimating the distribution parameters for each device was the OLS method.
The main objective of this research is to determine the optimal time for preventive maintenance of medical devices. Two methods were adopted to estimate the optimal time of preventive maintenance. The first method depends on the maintenance schedule by relying on information on the cost of maintenance and the cost of stopping work and acc
... Show MoreThe study's primary purpose is to explore an appropriate way of monitoring and assessing water depths using the satellite remote sensing technique of the Al Habbaniyah Lake in Iraq. This research studied the experience-conditions (thresholds) of different bands for multi-temporal satellite image data with different satellite image sensors (Landsat 5-TM, and EO1-ALI) for the same region, to recognize regions of water depths. The threshold values are taken that to separate the Al Habbaniyah Lake to the required depths (shallow, deep, and very deep), as a supervised method. A three-dimension feature space plot had used to represent these regions. The relationship of the mean values of the three separated water regions with all TM and A
... Show More