Single phase capacitor-run induction motors (IMs) are used in various applications such as home appliances and machine tools; they are affected by the sags or swells and any fault that can lead to disturb the supply and make it produce rms voltage below or above the rated motor voltage, which is 220V. A control system is designed to regulate the output voltage of the converter irrespective to the variation of the load and within a specific range of supply voltage variation. The steady-state equivalent circuit of the Buck-Boost chopper type AC voltage regulator, as well as the analysis of this circuit are presented in this paper. Switching device for the regulator is an IGBT Module. The proposed chopper uses pulse width modulation (PWM) control technique to chop the input voltage into segments in order to guarantee rated rms voltage supplied to the load, which is capacitor-run induction motor. Proportional integral (PI) controller is used to obtain very small steady state error, stable and fast dynamic response, and robustness against variations in the line voltage. The complete system is simulated using software package, and the results are obtained to verify the proposed control method.
Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show MoreChronic periodontitis (CP) is an inflammatory disease affecting tooth supporting structures in response to bacterial dental plaque causing irreversible tissue destruction. Cyclooxygenase-2 (COX-2) is an effective mediator in the pathogenesis of periodontitis. Polymorphisms in the COX-2 gene may contribute to its overexpression and increased disease susceptibility. To evaluate the association between -1195 A/G single nucleotide polymorphism (SNP) in the promotor area of the cyclooxygenase-2(COX-2) gene and severity of chronic periodontitis in a sample of Iraqi population. -1195A/ G COX-2 SNP was investigated in 70 chronic periodontitis (CP) cases and 30 healthy controls. CP cases composed of 2 subgroups (35 moderate CP cases and 35 severe CP
... Show More Finite element method is the most widely numerical technique used in engineering field. Through the study of behavior of concrete material properties, various concrete constitutive laws and failure criteria have been developed to model the behavior of concrete. A feature of the Finite Element program (ATENA) is used in this study to model the behavior of UHPC corbel under concentrated load only. The Finite Element (FE) model is followed by verification against experimental results. Some variable effects on the shear capacity of the UHPC corbels are also demonstrated in a parametric study. A proposed design equation of shear strength of UHPC corbel was presented and checked with numerical results.
This paper deals with finite element modeling of the ultimate load behavior of double skin composite (DSC) slabs. In a DSC slab, shear connectors in the form of nut bolt technique studs are used to transfer shear between the outer skin made of steel plates and the concrete core. The current study is based on finite element analysis using ANSYS Version 11 APDL release computer program. Experimental programmes were carried out by the others, two simply supported DSC beams were tested until failure under a concentrated load applied at the center. These test specimens were analyzed by the finite element method and the analyses have shown that these slabs displayed a high degree of flexural characteristics, ultimate strength,
... Show MoreThe major objectives of this research are to analyze the behavior of road embankments
reinforced with geotextiles constructed on soft soil and describe the finite element analysis by using
ANSYS program ver. (5.4). The ANSYS finite element program helps in analyzing the stability of
geo- structure (embankment) in varied application of geotextiles reinforcement to enhance the best
design for embankment.
The results of analysis indicate that one of the primary function of geotextiles reinforcement was to
reduce the horizontal displacement significantly. With the inclusions of reinforcement, the horizontal
displacement reduced by about (81%), while the vertical displacement reduced by (32%). The effect
of geotextiles
The study was performed to analyze the oropharynx airway and examine the influence of age and gender on the oropharynx volume configuration using cone beam computed tomography.
This study examined the cone beam computed tomographic images of 51 patients 25 male and 26 females, group matched for age and gender. The oropharynx airway volume and area between the posterior nasal spine and top of the epiglottis were measured and compared.
Background: This study designed to shade light on the important role of CBCT in accurate localization of the impacted maxillary canines. Materials and method: Fifty two unilateral and bilateral impacted maxillary canines from 30 patients (24 females and 6 males) were evaluated by a volumetric 3D images obtained from cone beam CT. All samples attended to the specialist health center of dentistry in Al-Sadder City referred to CBCT by oral surgeons or orthodontists to detect the exact position of impacted upper canine in cases when there was no bulging buccally or palatally which aids to detect the exact position. Results: Mesio-palatal angulations had the highest rate (63.5%) followed by mesio-labial (19.2%), vertical (labial) (9.6%), disto-p
... Show MoreThe bony pelvis has a major role in weight transmission to the lower limbs. The complexities of its geometric form, material properties, and loading conditions render it an open subject to biomechanical analysis.
The present study deals with area measurement, and three-dimensional finite element analysis of the hip bone to investigate magnitudes, load direction, and stress distribution under physiological loading conditions.
The surface areas of the auricular surface, lunate surface, and symphysis pubis were measured in (35) adult hip bones. A solid model was translated into ANSYS parametric design language to be analyzed by finite element analysis method under different loading conditions.
The surface
... Show MoreIn this paper, photometric analysis of two short period group of the eclipsing binaries (RS CVn); RT And and BH Vir is presented. New physical and geometric parameters were obtained by performing two computer modeling. The first model is software package PHOEBE based on the Wilson–Devinney method, and the second is Binary Maker 3 (BM3).Our results are in good agreement with those obtained using the same modeling.
An energy and exergy thermodynamic analysis using EES program was done for a domestic refrigerator working with R-134a using vapor compression refrigeration cycle. The analysis deals with the system component, i.e. compressor, condenser, evaporator and the expansion device. The analysis depends on the entropy generation minimization approach to improve the refrigerator performance by exploring the optimum design points. These design points were derived from three different theories governing the entropy generation minimization using exergy analyzing method. These theories were first applied to find the optimum balance between the hot inner condenser area and the cold inner evaporator area of the refrigerator and between
... Show More