The parameters of resistance spot welding (RSW) performed on low strength commercial aluminum sheets are investigated experimentally, the performance requirements and weldability issues were driven the choice of a specific aluminum alloy that was AA1050. RSW aluminum alloys has a major problem of inconsistent quality from weld to weld comparing with welding steel
alloys sheet, due to the higher thermal conductivity, higher thermal expansion, narrow plastic temperature range, and lower electrical resistivity. Much effort has been devoted to the study of describing the relation between the parameters of the process (welding current, welding time, and electrode force) and weld strength. Shear-tensile strength tests were performed to indicate the weld
quality. A weld lobe diagrams were constructed to evaluate the weldability of three sheet thicknesses of this alloy. Most appropriate welding time and electrode force are 5 cycles and 1.75- 2.25 kN respectively. The ranges of the weldability are 14-28, 18-30, and 22-32 kA for 0.6, 1.0, and 1.5 mm sheet thicknesses respectively. A statistical regression analysis was used to demonstrate the
relationship of the process parameters and the strength of the weldments. Two empirical equations for each thickness were proposed to estimate the shear tensile strength of the weldments, one for quadratic and the other linear relationship between the process parameters and the strength. There are no significant differences between the equations when applied to the available data.
Background: Simvastatin (SIM) is a lipid-lowering agent to prevent disorders caused by clogged blood vessels. Because of its low solubility, it has low bioavailability. The adsorption technique is effective in improving drug solubility and dissolution rate. Objective: To use magnesium aluminum silicate (MAS) as an adsorbent in combination with Soluplus® as a hydrophilic polymer to formulate SIM as immediate-release tablets (IRTs). Methods: We used the solvent evaporation method to make MAS-loaded SIM in the presence of Soluplus®, making sure that the ratio of SIM to MAS to SOLU was 1:6:3. We then used this mixture to make IRTs. Using the direct compression method, we made all of the SIM-IRT formulas. We used diluents like Avicel
... Show MoreNew complexes of Al(III) such as [Al (Ura) (Phen) (OH2) Cl ] Cl. 2H2O, [Al(Ura)2(OA)(OH2)Cl].H2O and [Al(Ura)3Cl3]H2O type, where (Ura)=Uracil, (Phen)= 1,10-Phenanthroline monohydrate and (OA)= Oxalic acid dihydrate, were prepared. The elemental microanalysis, FT.IR, electronic spectra, and magnetic susceptibility as well as the conductivity measurements are characterized. For isolated three complexes for six coordinated of Al(III) are proposed with molecular formulas that depend on the nature of (Ura), (Phen) and (OA) present. The suggested molecular structure into all complexes for aluminum ion is octahedral geometries .The antibacterial efficacy was examined from metal salt (AlCl3), ligands and metal complexes into the pathogenic bacteri
... Show MoreIn this work, yttrium oxide particles (powder) reinforced AL-Si matrix composites (Y2O3/Al-Si) and Chromium oxide particles reinforced AL-Si matrix composites (Cr2O3/AL-Si) were prepared by direct squeeze casting. The volume percentages of yttrium oxide used are (4, 8.1, 12.1, 16.1 vol %) and the volume percentages of the chromium oxide particles used are (3.1, 6.3, 9.4, 12.5 vol. %). The parameters affecting the preparation of Y2O3/Al-Si and Cr2O3/AL-Si composites by direct squeeze casting process were studied. The molten Al-Si alloy with yttrium oxide particles or with chromium oxide particles was stirred again using an electrical stirrer at speed 500 rpm and the molten alloy was poured into the squeeze die cavity. Th
... Show MoreThis study presents the effect of laser energy on burning loss of magnesium from the holes' drilled in aluminum alloy 5052. High energy free running pulsed Nd:Glass laser of 300 µs pulse duration has been used to perform the experiments. The laser energy was varied from 1.0 to 8.0 Joules, The drilling processes have been carried out under atmospheric pressure and vacuum inside a specially designed chamber. Microhardness of the blind drilled holes has been investigated .The results indicated that the magnesium loss could be manipulated by adjusting the focusing conditions of the laser beam. Almost, the obtained holes were free of cracks with low taper and low sputter deposition. .The holes performed under atmospheric conditions have high
... Show MoreUrinary tract infection is a bacterial infection that often affects the bladder and thus the urinary system. E. coli is one of the leading uropathogenic bacteria that cause urinary tract infections. Uropathogenic E. coli is highly effective and successful in causing urinary tract infections through biofilm formation and urothelial cell invasion mechanisms. Other organisms that cause urinary tract infections include members of the Enterobacteriaceae family, streptococci and staphylococci species and perch. In addition, K.penumoniae is another important gram-negative bacterium that causes urinary tract infections. With the PCR technique, unseen bacterial species can be detected using standard clinical microbiology methods. In this study, the
... Show MoreIn the present work, the feasibility of formation near-ideal ohmic behavior of In/n-Si contact efficiently by 300 s duration Nd:YAG pulsed laser processing has been recognized. Several laser pulses energy densities have been used, and the optimal energy density that gives best results is obtained. Topography of the irradiated region was extensively discussed and supported with micrographic illustrations to determine the surface condition that can play the important role in the ohmic contact quality. I-V characteristics in the forward and reverse bias and barrier height measurements have been studied for different irradiated samples to determine the laser energy density that gives best ohmic behavior. Comparing the current results with
... Show MoreThis review focuses on conservation agriculture (CA) and its effects on increasing the soil’s resistance to erosion. CA involves minimum soil disturbance (minimum tillage/ no-till), diversified crop rotation, and maintenance of the soil cover to increase soil fertility and reduce erosion. CA reduces soil loss by up to 90% and water erosion by approximately 50 to 70% from runoff as it increases the health of the soil, yield of crops, and water-retention capacity of the soil by incorporating soil organic matter and promoting biodiversity. Crop rotation prevents the replenishment and depletion of soil nutrients by atmospheric fixation of nitrogen/biological nitrogen fixation. Controlled traffic farming (CTF) is a new strategy in which travel
... Show More