The parameters of resistance spot welding (RSW) performed on low strength commercial aluminum sheets are investigated experimentally, the performance requirements and weldability issues were driven the choice of a specific aluminum alloy that was AA1050. RSW aluminum alloys has a major problem of inconsistent quality from weld to weld comparing with welding steel
alloys sheet, due to the higher thermal conductivity, higher thermal expansion, narrow plastic temperature range, and lower electrical resistivity. Much effort has been devoted to the study of describing the relation between the parameters of the process (welding current, welding time, and electrode force) and weld strength. Shear-tensile strength tests were performed to indicate the weld
quality. A weld lobe diagrams were constructed to evaluate the weldability of three sheet thicknesses of this alloy. Most appropriate welding time and electrode force are 5 cycles and 1.75- 2.25 kN respectively. The ranges of the weldability are 14-28, 18-30, and 22-32 kA for 0.6, 1.0, and 1.5 mm sheet thicknesses respectively. A statistical regression analysis was used to demonstrate the
relationship of the process parameters and the strength of the weldments. Two empirical equations for each thickness were proposed to estimate the shear tensile strength of the weldments, one for quadratic and the other linear relationship between the process parameters and the strength. There are no significant differences between the equations when applied to the available data.
A theoretical analysis studied was performed to study the opacity broadening of spectral lines emitted from aluminum plasma produced by Nd-YLF laser. The plasma density was in the range 1028-1026 )) m-3 with length of plasma about ?300) m) , the opacity was studied as function of plasma density & principle quantum number. The results show that the opacity broadening increases as plasma density increases & decreases with the spacing between energy levels of emission spectral line.
The DC electrical conductivity properties of Ge60Se40-xTex alloy with x = 0, 5, 10, 15 and 20). The samples were formed in the form of discs with the thickness of 0.25–0.30 cm and the diameter of 1.5 cm. Samples were pressed under a pressure of 6 tons per cm2 , using a ton hydraulic press. They were prepared after being pressed using a ton hydraulic press using a hydraulic press. Melting point technology use to preper the samples. Continuous electrical conductivity properties were recorded from room temperature to 475 K. Experimental data indicates that glass containing 15% Te has the highest electrical conductivity allowing maximum current through the sample compared to Lu with other samples. Therefore, it is found that the DC co
... Show MoreIn this study many specimen s were prepared from 2024-T3 Aluminum alloy for corrosion test by the dimensions of (15*15*3) mm according to ASTM G71-31 and then subjected to shot peening process at different time (15, 30, 45) minutes using steel ball having a diameter of 2.75 mm and Rockwell Hardness of 55RC to induce compressive residual stress which were measured using X-Ray diffraction method, surface roughness and hardness were tested before and after peening. Electrochemical corrosion test by Tafel extrapolation method was carried out in an environment of 3 .5% NaCl solutions (sea water) where Corrosion rate calculated using Tafle equation.
The obtained results show a favorable influence of SP treatment
... Show MoreABSTRACT Background:- White spot lesions are common esthetic problem that compromise the success of orthodontic treatment. This study aimed to assess white spot lesions in patients with fixed orthodontic appliance at different time intervals. Materials & Methods:- Thirty two patients (24 females and 8 males) were included in this study and they underwent clinical examination for white spot lesions using enamel decalcification index at four time intervals: (2-3 weeks after appliance insertion, 2, 4 and 6 months). Results:- The patients were free of white spot lesions at the appliance insertion visit. The mean of white spot lesions was 2.22 which were increased significantly during six months to reach 24.59 at the end of study. There was a si
... Show MoreTitanium alloy (Ti-6Al-4V or Gr.23) was widely used as a dental alloy. In the current study, polymerization of eugenol (PE) on Gr.23 titanium alloys was conducted by an electrochemical process before and after being treated by Micro Arc Oxidation (MAO). The formed films were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The corrosion behavior of Gr.23 alloy in an artificial saliva environment at a temperature range of 293–323 K has been studied and assessed by means of electrochemical polarization and impedance spectroscopy techniques. Three cases are taken into consideration; bare Gr.23, Gr.23 coated by PE, and Gr.23 coated by PE after MAO treatment. The maxi
... Show MorePhosphorus and dye (direct black) removal for small – scale wastewater applications were investigated using oven dried alum sludge (ODS).The use of alum sludge not only provides a low cost technique but also reduces the hazard and the cost related to the disposal of large amount of alum sludge. Phosphorus and dye removal exceeds 90% for all operating conditions applied in the research.
The residuals generated during the treatment of wastewater were further tested to study the possibility of aluminum leaching from oven dried alum sludge during the adsorption of phosphorus and dye. These tests observed a reduction in aluminum leaching indicating a lower risk imposed on land and surface water based on disposal options rather than on al
This paper introduces an experimental study on the behavior of confined concrete filled aluminum tubular (CFT) column to improve strength design, ductility and durability of concrete composite structures under concentrically loaded in compression to failure. To achieve this: seven column specimens with same concrete diameter 100mm and without steel reinforcement have been examined through experimental testing, which are used to study the effects of the thickness of the aluminum tube encased concrete ( thickness : 0mm, 2mm, 3mm, 4mm and 5mm with same length of column 450mm), length of column (thickness 5mm and length of column 700mm) and durability (thickness 5mm and length of column 450mm) on the structural behavior of &
... Show More