In this work chemical vapor deposition method (CVD) for the production of carbon nanotubes (CNTs) have been improved by the addition of S. Steel mesh container (SSMC) inside which the catalyst (Fe/Al2O3) was placed. Scanning electron microscopy (SEM) investigation method used to study nanotubes produced, showed that high yield of two types of (CNTs) obtained, single wall carbon nanotube (SWCNTs) with diameter and length of less than 50nm and several micrometers respectively and nanocoil tubes with a diameter and length of less than 100nm and several micrometers respectively. The chemical analysis of (CNTs) reveals that the main component is carbon (94%) and a little amount of Al (0.32%), Fe (2.22%) the reminder is oxygen. It was also found that the use of (SSMC) leads to increase in yield by a factor of 3 of (SWNTs) and produces nanocoil at the same time.
Introduction to Medical and Biological Statistics for Pharmacy Students and Medical Groups (Undergraduate & Postgraduate) - ISBNiraq.org
Porosity is important because it reflects the presence of oil reserves. Hence, the number of underground reserves and a direct influence on the essential petrophysical parameters, such as permeability and saturation, are related to connected pores. Also, the selection of perforation interval and recommended drilling additional infill wells. For the estimation two distinct methods are used to obtain the results: the first method is based on conventional equations that utilize porosity logs. In contrast, the second approach relies on statistical methods based on making matrices dependent on rock and fluid composition and solving the equations (matrices) instantaneously. In which records have entered as equations, and the matrix is sol
... Show MoreGenome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and id
... Show MoreA geographic information system (GIS) is a very effective management and analysis tool. Geographic locations rely on data. The use of artificial neural networks (ANNs) for the interpretation of natural resource data has been shown to be beneficial. Back-propagation neural networks are one of the most widespread and prevalent designs. The combination of geographic information systems with artificial neural networks provides a method for decreasing the cost of landscape change studies by shortening the time required to evaluate data. Numerous designs and kinds of ANNs have been created; the majority of them are PC-based service domains. Using the ArcGIS Network Analyst add-on, you can locate service regions around any network
... Show MoreFuture generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for
... Show MoreThis study aims to analyze the spatial distribution of the epidemic spread and the role of the physical, social, and economic characteristics in this spreading. A geographically weighted regression (GWR) model was built within a GIS environment using infection data monitored by the Iraqi Ministry of Health records for 10 months from March to December 2020. The factors adopted in this model are the size of urban interaction areas and human gatherings, movement level and accessibility, and the volume of public services and facilities that attract people. The results show that it would be possible to deal with each administrative unit in proportion to its circumstances in light of the factors that appe
This work involves theoretical and experimental studies for seven compounds to calculate the electrons spectrum and NLO properties. The theoretical study is done by employing the Time Depending Density Functional Theory TD-DFT and B3LYP/high basis set 6-311++G (2d,2p), using Gaussian program 09. Experimental study by UV/VIS spectrophotometer device to prove the theoretical study. Theoretical and experimental results were applicable in spectrum and energy gap values, in addition to convergence theoretically the energy gap results from ΔEHOMO-LUMO and UV/VIS. spectrum. Consider the theoretical method very appropriate to compounds that absorb in vacuum UV.
A reduced-order extended state observer (RESO) based a continuous sliding mode control (SMC) is proposed in this paper for the tracking problem of high order Brunovsky systems with the existence of external perturbations and system uncertainties. For this purpose, a composite control is constituted by two consecutive steps. First, the reduced-order ESO (RESO) technique is designed to estimate unknown system states and total disturbance without estimating an available state. Second, the continuous SMC law is designed based on the estimations supplied by the RESO estimator in order to govern the nominal system part. More importantly, the robustness performance is well achieved by compensating not only the lumped disturbance, but also its esti
... Show MoreIn information security, fingerprint verification is one of the most common recent approaches for verifying human identity through a distinctive pattern. The verification process works by comparing a pair of fingerprint templates and identifying the similarity/matching among them. Several research studies have utilized different techniques for the matching process such as fuzzy vault and image filtering approaches. Yet, these approaches are still suffering from the imprecise articulation of the biometrics’ interesting patterns. The emergence of deep learning architectures such as the Convolutional Neural Network (CNN) has been extensively used for image processing and object detection tasks and showed an outstanding performance compare
... Show More