The present study develops an artificial neural network (ANN) to model an analysis and a simulation of the correlation between the average corrosion rate carbon steel and the effective parameter Reynolds number (Re), water concentration (Wc) % temperature (T o) with constant of PH 7 . The water, produced fom oil in Kirkuk oil field in Iraq from well no. k184-Depth2200ft., has been used as a corrosive media and specimen area (400 mm2) for the materials that were used as low carbon steel pipe. The pipes are supplied by Doura Refinery . The used flow system is all made of Q.V.F glass, and the circulation of the two –phase (liquid – liquid ) is affected using a Q.V.F pump .The input parameters of the model consists of Reynolds number , water concentration and temperature. The output is average corrosion rate .The performance of the two training algorithms, gradient descent with momentum and Levenberg-Marquardt, are compared to select the most suitable training algorithm for corrosion rate model. The model can be used to calculate the average corrosion rate properties of carbon steel alloy as functions of Reynolds number, water concentration and temperature. Accordingly, the combined influence of these effective parameters and the average corrosion rate is simulated. The results show that the corrosion rate increases with the increase of temperature, Reynolds number and the increase of water concentration.
A time series analysis can help to observe the behavior of the system and specify the system faults. In addition, it also helps to explain the various energy flows in the system and further aid in reducing the thermodynamic losses. The intelligent supervisory LabVIEW software can monitor the incoming data from the system by using Arduino microcontroller and calculates the important parameters. Energy, exergy, and anergy analysis present in this paper to investigate the system performance as well as its components. To accomplish this, a 4-ton vertical split air conditioner based on vapor compression refrigeration cycle charged with refrigerant R-22 was modified for experimental analysis. The results showed that during 540
... Show MoreIn this study, a three-dimensional finite element analysis using ANSYS 12.1 program had been employed to simulate simply supported reinforced concrete (RC) T-beams with multiple web circular openings subjected to an impact loading. Three design parameters were considered, including size, location and number of the web openings. Twelve models of simply supported RC T-beams were subjected to one point of transient (impact) loading at mid span. Beams were simulated and analysis results were obtained in terms of mid span deflection-time histories and compared with the results of the solid reference one. The maximum mid span deflection is an important index for evaluating damage levels of the RC beams subjected to impact loading. Three experi
... Show MoreThere is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP
... Show MoreIn this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe
... Show MoreKlebsiella pneumoniae is among the most frequent microorganisms isolated from infections of burn wounds. This cross-sectional study aimed to investigate the distribution of multi-drug resistant (MDR) K. pneumoniae in two burn hospitals and the antibiotic resistance profile in different burn regions of the same patient. It was performed in two hospitals (Al-Zahraa and Al-Karama) in Al-Kut, Iraq, between January and May 2022. Totally, 100 burn swabs were collected from 40 patients of both genders suffering from burn wound infections, with ages ranging between 3 and 50 years. Klebsiella pneumoniae were isolated and identified using conventional methods followed by VITEK®2 system and confirmed via polymerase chain reaction targeting t
... Show Morethis paper presents a novel method for solving nonlinear optimal conrol problems of regular type via its equivalent two points boundary value problems using the non-classical
In light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimen
... Show MoreABSTRUCT
In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error ( λ ) in the model (SPSEM), estimated the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo
... Show More