The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult conditions like radiation, high temperature and noise with minimum cost of manufacturing and maintenance. A vortex rate sensor made of wood has been designed and manufactured to study theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that the relation between the differential pressure taken from the sensor pickoff points and the angular velocity of the sensor was linear.The present work involved theoretical and experimental study of vortex rate sensor static characteristics .Vortex rate sensor has been designed and manufactured with dimensions :- Radius of vortex chamber= 140 mm, Radius of sink tube rs= 4.5 mm, the pickoff hole diameter =
2mm, Height of vortex chamber b= 19 mm, Height of pickoff pipe h= 25 mm.
The study aimed to assess Milk Thistle oi reducing the aflatoxin damage and improve the health status of local breed hens. The study was performed on 60 hens aged 35 weeks, weighing 2-2.5 kg of the body was obtained and housed on a private poultry farm in north of Baghdad (Altaji) for a period of 9 weeks from 22 October until 22 December 2020. Hens were divided to three treatments (20 hens). The first was fed a basal diet free of aflatoxin. The 2nd fed on a contaminated diet with aflatoxin (14.6 ppb) while the 3rd fed as in the 2nd with 0.5% of Milk Thistle oil /kg feed. A 5 hens from each group were slaughtered at the end of the trial for the histopathological inspection of liver, spleen and intestine tissues to evaluate the harmfu
... Show More<p>The current work investigated the combustion efficiency of biodiesel engines under diverse ratios of compression (15.5, 16.5, 17.5, and 18.5) and different biodiesel fuels produced from apricot oil, papaya oil, sunflower oil, and tomato seed oil. The combustion process of the biodiesel fuel inside the engine was simulated utilizing ANSYS Fluent v16 (CFD). On AV1 diesel engines (Kirloskar), numerical simulations were conducted at 1500 rpm. The outcomes of the simulation demonstrated that increasing the compression ratio (CR) led to increased peak temperature and pressures in the combustion chamber, as well as elevated levels of CO<sub>2</sub> and NO mass fractions and decreased CO emission values un
... Show MoreThe present experimental work is conducted to examine the influence of adding Alumina (Al2O3) nanoparticles and Titanium oxide (TiO2) nanoparticles each alone to diesel fuel on the characteristic of the emissions. The size of both Alumina and Titanium oxide nanoparticles which have been added to diesel fuel to obtain nano-fuel is about 20 nm and 25 nm respectively. Three doses of (Al2O3) and (TiO2) were prepared (25, 50, and 100) ppm. The nanoparticles mixed with gas oil fuel by mechanical homogenous (manual electrical mixer) and ultrasonic processor. The study reveals that the adding of Aluminum oxide (Al2O3) and Titanium oxide (TiO2) to g
... Show MoreIn this work, the spectra for plasma glow produced by pulse
Nd:YAG laser (λ=532 and 1064nm) on Ag:Al alloy with same molar
ratio samples in distilled water were analyzed by studying the atomic
lines compared with aluminum and silver strong standard lines. The
effect of laser energies of the range 300 to 800 mJ on spectral lines,
produced by laser ablation, were investigated using optical
spectroscopy. The electron temperature was found to be increased
from 1.698 to 1.899 eV, while the electron density decreased from
2.247×1015 to 5.08×1014 cm-3 with increasing laser energy from 300
to 800 mJ with wavelength of 1064 nm. The values of electron
temperature using second harmonic frequency are greater than of<
Thin films of Nb2O5 have been successfully deposited using the DC reactive magnetron sputtering technique to manufacture NH3 gas sensors. These films have been annealed at a high temperature of 800°C for one hour. The assessment of the Nb2O5 thin films structural, morphological, and electrical characteristics was carried out using several methods such as X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity assessments. The XRD analysis confirms the polycrystalline composition of the Nb2O5 thin films with a hexagonal crystal structure. Furthermore, the sensitivity, response time, and recovery time of the gas sensor were evaluated for the Nb2O5 thin film
... Show MoreGraphene oxide GO was functionalized with 4-amino, 3-substituted 1H, 1, 2, 4 Triazole 5(4H) thion (ASTT) to obtain GOT. GOT characterized by FT-IR, XRD.via modification of the working electrode of the SPCE with the prepared nanomaterial (GOT) the effect of scan rate and pH on the determination of Amoxilline (AMOX) was studied using cyclic voltammetry. AMOX show various responses at pH ranging from 2 to 7 and also was observed sharp increase in the oxidation peaks in the pH 3. The formal potential (midpoint) for AMOX was highly pH-dependent. From the effect of scan rate, surface coverage concentration Γ of electroactive species the values of the electron transfer coefficient and the electron transfer constant rate ket was obtained as 5.39×
... Show MoreA field experiment was conducted during winter, 2015-16 with the objective to investigate the effect of bread wheat cultivars (Abu-Ghraib3, Ibaa99, and Alfeteh) and seed priming 100, 100, 150 mg L-1 of benzyl adenine, salicylic acid, gibberellic acid (GA3), respectively, ethanolic extract of Salix Sp., water extract of Glycyrrhiza glabra and distilled water (control) on grain growth rate (GGR), effective filling period (EFP) and accelerating of physiological maturity. Randomized complete block design with three replicates was applied. GA3×Ibaa99 surpassed others in grain yield (7.432 tonne ha-1) when gave the highest grain weight (45.13 mg grain-1) and GGR (1.5 mg grain-1 day-1) with the fastest time to start and end EFP (5 and 34 days), w
... Show MoreWe have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed (LSD) to estimate the parameters an
... Show More