Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a recognition rate of 97.75% in the presence of facial expression, lighting and pose variations. Results are compared with its wavelet-based counterpart where it obtained a recognition rate of 10.4%. The proposed multiwavenet demonstrated very good recognition rate in the presence of variations in facial expression, lighting and pose and outperformed its wavelet-based counterpart.
Deep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing
... Show MoreKnowledge of the distribution of the rock mechanical properties along the depth of the wells is an important task for many applications related to reservoir geomechanics. Such these applications are wellbore stability analysis, hydraulic fracturing, reservoir compaction and subsidence, sand production, and fault reactivation. A major challenge with determining the rock mechanical properties is that they are not directly measured at the wellbore. They can be only sampled at well location using rock testing. Furthermore, the core analysis provides discrete data measurements for specific depth as well as it is often available only for a few wells in a field of interest. This study presents a methodology to generate synthetic-geomechani
... Show MoreAbstract
This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model
... Show MoreIn this work, the relationship between the ionospheric parameters (Maximum Usable Frequency (MUF), Lowest Usable Frequency (LUF) and Optimum working Frequency (OWF)) has been studied for the ionosphere layer over the Iraqi zone. The capital Baghdad (44.42oE, 33.32oN) has been selected to represent the transmitter station and many other cities that spread over Iraqi region have represented as receiver stations. The REC533 communication model considered as one of the modern radio broadcasting version of ITU has been used to calculate the LUF parameter, while the MUF and OWF ionospheric parameters have been generated using ASAPS international communication model which represents one of the most advanced and
... Show MoreVocational education is the basis of contemporary educational movement that aims at satisfying human needs. Societies can develop their human resources via setting programs for the working class as an aspect of the comprehensive national development. Vocational education is the main source of technical cadres the Iraqi labor market requires of the vocational preparatory schools to provide after three years of schooling.
The vocational schools of the governorate of Basra have a number of problems that lead to the lack of proficiency of their graduates. This study is an attempt to identify these problems or obstacles
... Show MoreThe Pulse Coupled Oscillator (PCO) has attracted substantial attention and widely used in wireless sensor networks (WSNs), where it utilizes firefly synchronization to attract mating partners, similar to artificial occurrences that mimic natural phenomena. However, the PCO model might not be applicable for simultaneous transmission and data reception because of energy constraints. Thus, an energy-efficient pulse coupled oscillator (EEPCO) has been proposed, which employs the self-organizing method by combining biologically and non-biologically inspired network systems and has proven to reduce the transmission delay and energy consumption of sensor nodes. However, the EEPCO method has only been experimented in attack-free networks without
... Show MoreIn recent years, the migration of the computational workload to computational clouds has attracted intruders to target and exploit cloud networks internally and externally. The investigation of such hazardous network attacks in the cloud network requires comprehensive network forensics methods (NFM) to identify the source of the attack. However, cloud computing lacks NFM to identify the network attacks that affect various cloud resources by disseminating through cloud networks. In this paper, the study is motivated by the need to find the applicability of current (C-NFMs) for cloud networks of the cloud computing. The applicability is evaluated based on strengths, weaknesses, opportunities, and threats (SWOT) to outlook the cloud network. T
... Show MoreMobile Ad hoc Networks (MANETs) is a wireless technology that plays an important role in several modern applications which include military, civil, health and real-time applications. Providing Quality of Service (QoS) for this application with network characterized by node mobility, infrastructure-less, limitation resource is a critical issue and takes greater attention. However, transport protocols effected influential on the performance of MANET application. This study provides an analysis and evaluation of the performance for TFRC, UDP and TCP transport protocols in MANET environment. In order to achieve high accuracy results, the three transport protocols are implemented and simulated with four different network topology which are 5, 10
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreNowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show More