Preferred Language
Articles
/
joe-214
Prediction of Ryznar Stability Index for Treated Water of WTPs Located on Al-Karakh Side of Baghdad City using Artificial Neural Network (ANN) Technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For Al-Dora WTP, ANN 3 model could be used as R was 92.8%.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Aip Conference Proceedings
Radon concentrations assessment in tap water for different areas in Baghdad city using Rad7
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Using Ultraviolet Technique for Well Water Disinfection
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Permeability Prediction in One of Iraqi Carbonate Reservoir Using Statistical, Hydraulic Flow Units, and ANN Methods
...Show More Authors

   Permeability is an essential parameter in reservoir characterization because it is determined hydrocarbon flow patterns and volume, for this reason, the need for accurate and inexpensive methods for predicting permeability is important. Predictive models of permeability become more attractive as a result.

   A Mishrif reservoir in Iraq's southeast has been chosen, and the study is based on data from four wells that penetrate the Mishrif formation. This study discusses some methods for predicting permeability. The conventional method of developing a link between permeability and porosity is one of the strategies. The second technique uses flow units and a flow zone indicator (FZI) to predict the permeability of a rock mass u

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Jun 01 2008
Journal Name
2008 Ieee International Joint Conference On Neural Networks (ieee World Congress On Computational Intelligence)
Linear block code decoder using neural network
...Show More Authors

View Publication
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Solid State Technology
Image Fusion Using A Convolutional Neural Network
...Show More Authors

Image Fusion Using A Convolutional Neural Network

Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Arabic Keywords Extraction using Conventional Neural Network
...Show More Authors

    Keywords provide the reader with a summary of the contents of the document and play a significant role in information retrieval systems, especially in search engine optimization and bibliographic databases. Furthermore keywords help to classify the document into the related topic. Keywords extraction included manual extracting depends on the content of the document or article and the judgment of its author. Manual extracting of keywords is costly, consumes effort and time, and error probability. In this research an automatic Arabic keywords extraction model based on deep learning algorithms is proposed. The model consists of three main steps: preprocessing, feature extraction and classification to classify the document

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Network Traffic Prediction Based on Boosting Learning
...Show More Authors

Classification of network traffic is an important topic for network management, traffic routing, safe traffic discrimination, and better service delivery. Traffic examination is the entire process of examining traffic data, from intercepting traffic data to discovering patterns, relationships, misconfigurations, and anomalies in a network. Between them, traffic classification is a sub-domain of this field, the purpose of which is to classify network traffic into predefined classes such as usual or abnormal traffic and application type. Most Internet applications encrypt data during traffic, and classifying encrypted data during traffic is not possible with traditional methods. Statistical and intelligence methods can find and model traff

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Classifying Illegal Activities on Tor Network using Hybrid Technique
...Show More Authors

    With the freedom offered by the Deep Web, people have the opportunity to express themselves freely and discretely, and sadly, this is one of the reasons why people carry out illicit activities there. In this work, a novel dataset for Dark Web active domains known as crawler-DB is presented. To build the crawler-DB, the Onion Routing Network (Tor) was sampled, and then a web crawler capable of crawling into links was built. The link addresses that are gathered by the crawler are then classified automatically into five classes. The algorithm built in this study demonstrated good performance as it achieved an accuracy of 85%. A popular text representation method was used with the proposed crawler-DB crossed by two different supervise

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Performance Assessment of Solar-Transformer-Consumption System Using Neural Network Approach
...Show More Authors

Solar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both so

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Cascade-Forward Neural Network for Volterra Integral Equation Solution
...Show More Authors

The method of solving volterra integral equation by using numerical solution is a simple operation but to require many memory space to compute and save the operation. The importance of this equation appeares new direction to solve the equation by using new methods to avoid obstacles. One of these methods employ neural network for obtaining the solution.

This paper presents a proposed method by using cascade-forward neural network to simulate volterra integral equations solutions. This method depends on training cascade-forward neural network by inputs which represent the mean of volterra integral equations solutions, the target of cascade-forward neural network is to get the desired output of this network. Cascade-forward neural

... Show More
View Publication Preview PDF
Crossref (3)
Crossref