Transient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic pressure sinusoidal amplitude range and time period values of . Numerical results show that the pressure contours lines are influenced by hydrostatic head variation and not affected with the sinusoidal amplitude and time period variation. It is found that the average Nusselt number decreases with time and pressure head increasing and decreases periodically with time and amplitude increasing. The time averaged Nusselt number decreases with imposed sinusoidal amplitude and cycle time period increasing.
In this paper we generalize Jacobsons results by proving that any integer in is a square-free integer), belong to . All units of are generated by the fundamental unit having the forms
Our generalization build on using the conditions
This leads us to classify the real quadratic fields into the sets Jacobsons results shows that and Sliwa confirm that and are the only real quadratic fields in .
In this paper we generalize Jacobsons results by proving that any integer in is a square-free integer), belong to . All units of are generated by the fundamental unit having the forms
our generalization build on using the conditions
This leads us to classify the real quadratic fields into the sets Jacobsons results shows that and Sliwa confirm that and are the only real quadratic fields in .
This study aims to derive a general relation between line loads that acting on two-way slab system and the equivalent uniformly distributed loads. This relation will be so useful to structural designer that are used to working with a uniformly distributed load and enable them to use the traditional methods for analysis of two-way systems (e.g. Direct Design Method). Two types of slab systems, Slab System with Beams and Flat Slab Systems, have been considered in this study to include the effect of aspect ratio and type of slab on the proposed relation. Five aspect ratios, l2/l1 of 0.5, 0.75, 1.0, 1.5 and 2.0, have been considered for both types of two-way systems.
All necessary finite element analyses have been executed with SAFE Soft
This research deals with the design and simulation of a solar power system consisting of a KC200GT solar panel, a closed loop boost converter and a three phase inverter by using Matlab / Simulink. The mathematical equations of the solar panel design are presented. The electrical characteristics of the panel are tested at the values of 1000 for light radiation and 25 °C for temperature environment. The Proportional Integral (PI) controller is connected as feedback with the Boost converter to obtain a stable output voltage by reducing the oscillations in the voltage to charge a battery connected to the output of the converter. Two methods (Particle Swarm Optimization (PSO) and Zeigler- Nichols) are used for tuning
... Show MoreIn present work examined the oxidation desulfurization in batch system for model fuels with 2250 ppm sulfur content using air as the oxidant and ZnO/AC composite prepared by thermal co-precipitation method. Different factors were studied such as composite loading 1, 1.5 and 2.5 g, temperature 25 oC, 30 oC and 40 oC and reaction time 30, 45 and 60 minutes. The optimum condition is obtained by using Tauguchi experiential design for oxidation desulfurization of model fuel. the highest percent sulfur removal is about 33 at optimum conditions. The kinetic and effect of internal mass transfer were studied for oxidation desulfurization of model fuel, also an empirical kinetic model was calculated for model fuels
... Show MoreRecently, the financial mathematics has been emerged to interpret and predict the underlying mechanism that generates an incident of concern. A system of differential equations can reveal a dynamical development of financial mechanism across time. Multivariate wiener process represents the stochastic term in a system of stochastic differential equations (SDE). The standard wiener process follows a Markov chain, and hence it is a martingale (kind of Markov chain), which is a good integrator. Though, the fractional Wiener process does not follow a Markov chain, hence it is not a good integrator. This problem will produce an Arbitrage (non-equilibrium in the market) in the predicted series. It is undesired property that leads to erroneous conc
... Show MoreIn this paper we shall prepare an sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).
In this paper we shall prepare an sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).
This study discussed the effects of doping with silver (Ag) on the optical and structural properties of
CdO nanoparticles at different concentrations 0, 1, 2, 3, 4, 5 wt% prepared by the precipitation method. The
materials were annealed at 550˚C for 1 h. The structural, topographical, and optical properties were
diagnosed by X-ray diffraction analysis, atomic force instrument, and visible and ultraviolet spectrometers.
The results show that the average diameter of the grains depends on the percentage of added silver to the
material, as the diameter decreased from 88.8 to 59.7 nm, and it was found that the roughness increased from
5.56 to 26.5. When studying the optical properties, it was noted that th
In this work semi–empirical method (PM3) calculations are carried out by (MOPAC) computational packages have been employed to calculate the molecular orbital's energies for some organic pollutants. The long– chain quaternary ammonium cations called Iraqi Clays (Bentonite – modified) are used to remove these organic pollutants from water, by adding a small cationic surfactant so as to result in floes which are agglomerates of organobentonite to remove organic pollutants. This calculation which suggests the best surface active material, can be used to modify the adsorption efficiency of aniline , phenol, phenol deriviatives, Tri methyl glycine, ester and pecticides , on Iraqi Clay (bentonite) by comparing the theoretical results w
... Show More