Transient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic pressure sinusoidal amplitude range and time period values of . Numerical results show that the pressure contours lines are influenced by hydrostatic head variation and not affected with the sinusoidal amplitude and time period variation. It is found that the average Nusselt number decreases with time and pressure head increasing and decreases periodically with time and amplitude increasing. The time averaged Nusselt number decreases with imposed sinusoidal amplitude and cycle time period increasing.
The nuclear ground-state structure of some Nickel (58-66Ni) isotopes has been investigated within the framework of the mean field approach using the self-consist Hartree-Fock calculations (HF) including the effective interactions of Skyrme. The Skyrme parameterizations SKM, SKM*, SI, SIII, SKO, SKE, SLY4, SKxs15, SKxs20 and SKxs25 have been utilized with HF method to study the nuclear ground state charge, mass, neutron and proton densities with the corresponding root mean square radii, charge form factors, binding energies and neutron skin thickness. The deduced results led to specifying one set or more of Skyrme parameterizations that used to achieve the best agreement with the available experimental
... Show MoreThe aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
Background/objectives: To study the motion equation under all perturbations effect for Low Earth Orbit (LEO) satellite. Predicting a satellite’s orbit is an important part of mission exploration. Methodology: Using 4th order Runge–Kutta’s method this equation was integrated numerically. In this study, the accurate perturbed value of orbital elements was calculated by using sub-steps number m during one revolution, also different step numbers nnn during 400 revolutions. The predication algorithm was applied and orbital elements changing were analyzed. The satellite in LEO influences by drag more than other perturbations regardless nnn through semi-major axis and eccentricity reducing. Findings and novelty/improvement: The results demo
... Show MoreSolar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both so
... Show MoreIn this paper, we investigate the behavior of the bayes estimators, for the scale parameter of the Gompertz distribution under two different loss functions such as, the squared error loss function, the exponential loss function (proposed), based different double prior distributions represented as erlang with inverse levy prior, erlang with non-informative prior, inverse levy with non-informative prior and erlang with chi-square prior.
The simulation method was fulfilled to obtain the results, including the estimated values and the mean square error (MSE) for the scale parameter of the Gompertz distribution, for different cases for the scale parameter of the Gompertz distr
... Show MoreThe theoretical analysis depends on the Classical Laminated Plate Theory (CLPT) that is based on the Von-K ráman Theory and Kirchhov Hypothesis in the deflection analysis during elastic limit as well as the Hooke's laws of calculation the stresses. New function for boundary condition is used to solve the forth degree of differential equations which depends on variety sources of advanced engineering mathematics. The behavior of composite laminated plates, symmetric and anti-symmetric of cross-ply angle, under out-of-plane loads (uniform distributed loads) with two different boundary conditions are investigated to obtain the central deflection for mid-plane by using the Ritz method. The computer programs is built using Ma
... Show More
In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two. The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.
Average per capita GDP income is an important economic indicator. Economists use this term to determine the amount of progress or decline in the country's economy. It is also used to determine the order of countries and compare them with each other. Average per capita GDP income was first studied using the Time Series (Box Jenkins method), and the second is linear and non-linear regression; these methods are the most important and most commonly used statistical methods for forecasting because they are flexible and accurate in practice. The comparison is made to determine the best method between the two methods mentioned above using specific statistical criteria. The research found that the best approach is to build a model for predi
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreIn this paper, for the first time we introduce a new four-parameter model called the Gumbel- Pareto distribution by using the T-X method. We obtain some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters. Numerical illustration and an application to a real data set are given to show the flexibility and potentiality of the new model.