An improved Metal Solar Wall (MSW) with integrated thermal energy storage is presented in this research. The proposed MSW makes use of two, combined, enhanced heat transfer methods. One of the methods is characterized by filling the tested ducts with a commercially available copper Wired Inserts (WI), while the other one uses dimpled or sinusoidal shaped duct walls instead of plane walls. Ducts having square or semi-circular cross sectional areas are tested in this work.
A developed numerical model for simulating the transported thermal energy in MSW is solved by finite difference method. The model is described by system of three governing energy equations. An experimental test rig has been built and six new duct configurations have been fabricated and tested. Air is passed through the six ducts with Reynolds numbers from 1825 to 7300.
Six, new, correlations for Nusselt number and friction factor are developed to assess the benefits that are gained from using the WI and the dimpled and sine-wave duct walls. It is found that higher heat transfer rates are achieved using the Dimpled, semi–circular duct with Wired Inserts (DCWI). Also, it is found that Nusselt number and the pressure drop in the DCWI are respectively
(44.2% -100%) and (101.27% - 172.8%) greater than those of the flat duct with WI. The improvement in Nusselt number for flat duct with WI is found to be (1.4 – 2) times the values for flat duct with no WI. The results demonstrated that DCWI provides enhancements efficiency value that is higher than those obtained from other types of ducts. The developed MSW ducts have added to local knowledge a better understanding of the compound heat transfer enhancement.
This paper describes the development of a simple spectrophotometric determination of bismuth III with 4-(2-pyridylazo) resorcinol (PAR) in aqueous solution in the presence of cetypyridinium chloride surfactant at pH 5 which exhibits maximum absorption at 532 nm. Beer's law is obeyed over the range 5-200 µg/25 mL. i.e. 0.2-8 ppm with a molar absorptivity of 3×104 l.mol-1.cm-1 and Sandell's sensitivity index of 0.0069 µg.cm-2. The method has been applied successfully in the determination of Bi (III) in waters and veterinary preparation.
It is commonly known that Euler-Bernoulli’s thin beam theorem is not applicable whenever a nonlinear distribution of strain/stress occurs, such as in deep beams, or the stress distribution is discontinuous. In order to design the members experiencing such distorted stress regions, the Strut-and-Tie Model (STM) could be utilized. In this paper, experimental investigation of STM technique for three identical small-scale deep beams was conducted. The beams were simply supported and loaded statically with a concentrated load at the mid span of the beams. These deep beams had two symmetrical openings near the application point of loading. Both the deep beam, where the stress distribution cannot be assumed linear, and the ex
... Show MoreThe Influence of Some Vitamins and Biochemical Parameters on Iraqi Females’ Patients with Malignant Breast Cancer"
the shear strength parameters of the treated and untreated gypsum soil under the effect of four soaking and drying cycles has studied in this paper, moreover examined the effect of wetting and drying cycles on the collapse potential of the soil and comparing between the behavior of the treated and untreated gypsum soil under the effect of the two conditions. Gypsum soil sample brought from Sawa lake in Al Muthana governorate with the content of gypsum 65.5%, the polyurethane polymer (PP) was used with different percentages 3, 6, and 10% to enhance the mechanical properties of gypsum soil, model was prepared to achieve four soaking and drying cycle to the samples before testing, this model consists of an Aluminum plate base with dimensions 7
... Show More