In this study, the electro-hydraulic servo system for speed control of fixed displacement hydraulic motor using proportional valve and (PID) controller is investigated theoretically ,experimentally and simulation . The theoretical part includes the derivation of the nonlinear mathematical model equation of (valve – motor ) combination system and the derivation of the transfer function for the complete hydraulic system , the stability test of the system during the operation through the transfer function using MATLAB package
V7.1 have been done. An experimental part includes design and built hydraulic test rig and simple PID controller .The best PID gains have been calculated experimentally and simulation, speed control performance tests for the system at different thermal conditions for hydraulic oil have been done , Simulation analysis for (EHSS) using Automation Studio package V5.2 have been done . Comparison was made between experimental work and simulation work .The experimental results show good performance for (EHSS) using simple (PID) controller at hydraulic oil temperature around (60 – 70 ) and good speed response and performance for hydraulic motor with constant rotation speed (700) rpm with different load disturbance applied on the hydraulic motor .
This research represents a practical attempt applied to calibrate and verify a hydraulic model for the Blue Nile River. The calibration procedures are performed using the observed data for a previous period and comparing them with the calibration results while verification requirements are achieved with the application of the observed data for another future period and comparing them with the verification results. The study objective covered a relationship of the river terrain with the distance between the assumed points of the dam failures along the river length. The computed model values and the observed data should conform to the theoretical analysis and the overall verification performance of the model by comparing i
... Show More
One and two-dimensional hydraulic models simulations are important to specify the hydraulic characteristics of unsteady flow in Al-Gharraf River in order to define the locations that facing problems and suggesting the necessary treatments. The reach in the present study is 58200m long and lies between Kut and Hai Cities. Both numerical models were simulated using HEC-RAS software, 5.0.4, with flow rates ranging from 100 to 350 m3/s. Multi-scenarios of gates openings of Hai Regulator were applied. While the openings of Al-Gharraf Head Regulator were ranged between 60cm to fully opened. The suitable manning roughness for the unsteady state was
... Show MoreHeat is one of the most energy forms emitted to atmosphere by industrial processes. Water is considered to be the best material to reduce heat energy since its available in nature in abundance and has the ability to absorb heat efficiently. Cooling towers are ideal alternatives to re-cool hot water instead of throwing it especially in places that lack natural water resources or when there are environmental precautions because water with high temperature would be harmful to the ecosystem when it recycled to natural resources such as rivers and lakes. Also, cooling towers considered economically feasible when using west water. This paper interests with hydraulic characteristics of a counter flow wet cooling tower which was investigated experi
... Show MoreSingle phase capacitor-run induction motors (IMs) are used in various applications such as home appliances and machine tools; they are affected by the sags or swells and any fault that can lead to disturb the supply and make it produce rms voltage below or above the rated motor voltage, which is 220V. A control system is designed to regulate the output voltage of the converter irrespective to the variation of the load and within a specific range of supply voltage variation. The steady-state equivalent circuit of the Buck-Boost chopper type AC voltage regulator, as well as the analysis of this circuit are presented in this paper. Switching device for the regulator is an IGBT Module. The proposed chopper uses pulse width modulation (PWM) c
... Show MoreOne of the primary goals of any study involving groundwater is to make an exact assessment of the physical properties of the layers containing the water. One of the most fruitful ways to approach this goal is to conduct a pumping test for the aquifer. To make the most use of groundwater in terms of sustainable water management, this study attempts to assess its hydraulic features relative to the most significant aquifer represented in the Euphrates formation. A pumping test was carried out on 6 wells where each well is accompanied by an observation well. Cooper-Jacob and Theis Recovery methods were used to determine the aquifer transmissivity and storage coefficient. The ranges for permeability, transmissivity, and specific yiel
... Show MoreA genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil wa
Geotechnical soil problems underneath foundation of hydraulic structures occurs due to engineering soil properties, geological setting and hydraulic properties of the projects. Two finite element programs of Geoslope 2012 software, SIGMA/W and SEEP/W, were used for analysis of in situ stresses, load deformation behavior, seepage quantity and vertical gradient below Teeb weir foundation, to compute factors of safety against seepage uplift. The site soil is a granular (gravel, sand and silt), weakly cemented soil cohered by gypsum and clay materials. The area has low lying topography, with slightly tectonic activities. The model results show that the upstream side stresses are reduced while the pore pressure are in
... Show MoreReservoir characterization plays a crucial role in comprehending the distribution of formation properties and fluids within heterogeneous reservoirs. This knowledge is instrumental in constructing an accurate three-dimensional model of the reservoir, facilitating predictions regarding porosity, permeability, and fluid flow distribution. Among the various methods employed for reservoir characterization, the hydraulic flow unit stands out as a widely adopted approach. By effectively subdividing the reservoir into distinct zones, each characterized by unique petrophysical and geological properties, hydraulic flow units enable comprehensive reservoir analysis. The concept of the flow unit is closely tied to the flow zone indicator, a cr
... Show MoreIn drilling processes, the rheological properties pointed to the nature of the run-off and the composition of the drilling mud. Drilling mud performance can be assessed for solving the problems of the hole cleaning, fluid management, and hydraulics controls. The rheology factors are typically termed through the following parameters: Yield Point (Yp) and Plastic Viscosity (μp). The relation of (YP/ μp) is used for measuring of levelling for flow. High YP/ μp percentages are responsible for well cuttings transportation through laminar flow. The adequate values of (YP/ μp) are between 0 to 1 for the rheological models which used in drilling. This is what appeared in most of the models that were used in this study. The pressure loss
... Show MoreHydraulic fracturing is considered to be a vital cornerstone in decision making of unconventional reservoirs. With an increasing level of development of unconventional reservoirs, many questions have arisen regarding enhancing production performance of tight carbonate reservoirs, especially the evaluation of the potential for adapting multistage hydraulic fracturing technology in tight carbonate reservoirs to attain an economic revenue.
In this paper we present a feasibility study of multistage fractured horizontal well in typical tight carbonate reservoirs covering different values of permeability. We show that NPV is the suitable objective function for deciding on the optimum number