Electro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu concentration profiles. The model considers that: (1) electrical potential in the soil is constant with the time; (2) the effect of temperature is negligible; and (3) dissolution of soil constituents is negligible. The predicted pH profiles and transport of copper in sandy loam soil during electrokinetic remediation were found to reasonably agree with the bench-scale electro-kinetic
experimental results. The predicted contaminant speciation and distribution (aqueous, adsorbed, and precipitated) allow for an understanding of the transport processes and chemical reactions that control electro-kinetic remediation.
We consider the outflow of water from the peak of a triangular ridge into a channel of finite depth. Solutions are computed for different flow rates and bottom angles. A numerical method is used to compute the flow from the source for small values of flow rate and it is found that there is a maximum flow rate beyond which steady solutions do not seem to exist. Limiting flows are computed for each geometrical configuration. One application of this work is as a model of saline water being returned to the ocean after desalination. References Craya, A. ''Theoretical research on the flow of nonhomogeneous fluids''. La Houille Blanche, (1):22–55, 1949. doi:10.1051/lhb/1949017 Dun, C. R. and Hocking, G. C. ''Withdrawal of fluid through
... Show MoreThis study aims to show, the strength of steel beam-concrete slab system without using shear connectors (known as a non-composite action), where the effect of the friction force between the concrete slab and the steel beam has been investigated, by using finite element simulation.
The proposed finite element model has been verified based on comparison with an experimental work. Then, the model was adopted to study the system strength with a different steel beam and concrete slab profile. ABAQUS has been adopted in the preparation of all numerical models for this study.
After validation of the numerical models, a parametric study was conducted, with linear and non-linear Regression analysis. An equation re
... Show MoreWellbore instability problems cause nonproductive time, especially during drilling operations in the shale formations. These problems include stuck pipe, caving, lost circulation, and the tight hole, requiring more time to treat and therefore additional costs. The extensive hole collapse problem is considered one of the main challenges experienced when drilling in the Zubair shale formation. In turn, it is caused by nonproductive time and increasing well drilling expenditure. In this study, geomechanical modeling was used to determine a suitable mud weight window to overpass these problems and improve drilling performance for well development. Three failure criteria, including Mohr–Coulomb, modifie
The development of a reversed phase high performance liquid chromatography fluorescence method for the determination of the mycotoxins fumonisin B1 and fumonisin B2 by using silica-based monolithic column is described. The samples were first extracted using acetonitrile:water (50:50, v/v) and purified by using a C18 solid phase extraction-based clean-up column. Then, pre-column derivatization for the analyte using ortho-phthaldialdehyde in the presence of 2-mercaptoethanol was carried out. The developed method involved optimization of mobile phase composition using methanol and phosphate buffer, injection volume, temperature and flow rate. The liquid chromatographic separation was performed using a reversed phase Chromolith® RP-18e column
... Show MoreA many risk challenge in (settings hospital) are multi- bacteria are antibiotic-resistant. Some type strains that ability adhesion surface-attached bio-film census. Fifteen MRSA isolates were considered as high biofilm producers Moreover all MRSA isolates; M3, M5, M7 and M11 produced biofilms but the thickest biofilm seen M7strain. The MIC values of N. sativa oil against clinical isolates of MRSA were between (0.25, 0.5, 0.75, 1.0) μg/ml While MRSAcin (50, 75, 100, 125) µg\ ml. All biofilms treated with MRSAcin and Nigella sativa developed a presence of live cells after cultured on plate agar with inhibition zone between MIC (18 – 15) and (14- 11)mm respectively.Yet, results showed that MRSA supernatant developed a inhibitory ef
... Show MoreThis study includes adding chemicals to gypseous soil to improve its collapse characteristics. The collapse behavior of gypseous soil brought from the north of Iraq (Salah El-Deen governorate) with a gypsum content of 59% was investigated using five types of additions (cement dust, powder sodium meta-silicate, powder activated carbon, sodium silicate solution, and granular activated carbon). The soil was mixed by weight with cement dust (10, 20, and 30%), powder sodium meta-silicate (6%), powder activated carbon (10%), sodium silicate solution (3, 6, and 9%), and granular activated carbon (5, 10, and 15%). The collapse potential is reduced by 86, 71, 43, 37, and 35% when 30% cement dust, 6% powder sodium meta-silicate, 10% powder activated
... Show MoreAniera desert/cola was found new to science and to the Iraqi fauna. The description was
mainly based on external features and male genit
Granular Pile Anchor (GPA) is one of the innovative foundation techniques, devised for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of exp
... Show MoreThe Gullfaks field was discovered in 1978 in the Tampen area of the North Sea and it is one of the largest Norwegian oil fields located in Block 34/10 along the western flank of the Viking Graben in the northern North Sea. The Gullfaks field came on stream in 1986 and reached a peak of production in 2001. After some years, a decrease in production was noticed due to the decrease in pressure in the well. The goal of this paper is to improve the production of a well located in Gullfaks field by injecting CO2 through coiled tubing. The use of the CO2 injection method is due to the fact that it is a greenhouse gas, and its production in the atmosphere contributes to global warming. It is important to reduce its emission
... Show More