Research in Iraq has expanded in the field of material technology involving the properties of the lightweight concrete using natural aggregate. The use of the porcelinate aggregate in the production of structural light concrete has a wide objective
and requires a lot of research to become suitable for practical application. In this work metakaolin was used to improve compressive strength of lightweight porcelinate concrete which usually have a low compressive strength about 17 MPa . The effect of metakaolin on compressive, splitting tensile, flexure strengths and modulus of elasticity of lightweight porcelinate concrete have been investigated. Many experiments were carried out by replacing cement with different percentages of
metakaolin. The metakaolin was replaced by 5%, 10%, 15% and 20%. A control reference mix without metakaolin was made for comparison purpose. For all mixes, compressive, splitting tensile, flexure strengths and modulus of elasticity were
determined at 28-day. The results showed that the using of metakaolin improve the compressive, splitting tensile, flexure strengths and modulus of elasticity of lightweight porcelinate concrete. The higher compressive, splitting tensile, flexure
strengths and modulus of elasticity were found for 15% metakaolin.
This work aims to investigate the tensile and compression strengths of heat- cured acrylic resin denture base material by adding styrene-butadiene (S- B) to polymethyl methacrylate (PMMA). The most well- known issue in prosthodontic practice is fracture of a denture base. All samples were a blend of (90%, 80%) PMMA and (10%, 20%) S- B powder melted in Oxolane (Tetra hydro furan). These samples were chopped down into specimens of dimensions 100x10x2.5mm to carry out the requirements of tensile tests. The compression strength test specimens were shaped into a cylinder with dimensions of 12.7mm in diameter and 20mm in length. The experimental results show a significant increase in both tensile and compression strengths when compared to cont
... Show MoreIn this work, nanostructure zinc sulfide (ZnS) thin films at temperature of substrate 450 oC and thickness (120) nm have been produced by chemical spray pyrolysis method. The X-Ray Diffraction (XRD) measurements of the film showed that they have a polycrystalline structure and possessed a hexagonal phase with strong crystalline orientation of (103). The grain size was measured using scanning electron microscope (SEM) which was approximately equal to 80 nm. The linear optical measurements showed that ZnS nanostructure has direct energy gap. Nonlinear optical properties experiments were performed using Q-switched 532 nm Nd:YAG laser Z-scan system. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) estimated for Z
... Show MoreThis paper reports the effect of Mg doping on structural and optical properties of ZnO prepared by pulse laser deposition (PLD). The films deposited on glass substrate using Nd:YAG laser (1064 nm) as the light source. The structure and optical properties were characterized by X-ray diffraction (XRD) and transmittance measurements. The films grown have a polycrystalline wurtzite structure and high transmission in the UV-Vis (300-900) nm. The optical energy gap of ZnO:Mg thin films could be controlled between (3.2eV and 3.9eV). The refractive index of ZnO:Mg thin films decreases with Mg doping. The extinction coefficient and the complex dielectric constant were also investigate.
Silver sulfide and the thin films Ag2Se0.8Te0.2 and Ag2Se0.8S0.2 created by the thermal evaporation process on glass with a thickness of 350 nm were examined for their structural and optical properties. These films were made at a temperature of 300 K. According to the X-ray diffraction investigation, the films are polycrystalline and have an initial orthorhombic phase. Using X-ray diffraction research, the crystallization orientations of Ag2Se and Ag2Se0.8Te0.2 & Ag2Se0.8S0.2 (23.304, 49.91) were discovered (XRD). As (Ag2Se and Ag2Se0.8Te0.2 & Ag2Se0.8S0.2) absorption coefficient fell from (470-774) nm, the optical band gap increased (2.15 & 2 & 2.25eV). For instance, the characteristics of thin films made of Ag2Se0.8Te0.2 and Ag2Se0.8S0.2
... Show MoreIn this study, iron oxide nanoparticles (α-Fe₂O₃ NPs) were prepared using a readily available chili pepper plant extract from local markets. This study aims to evaluate the magnetic properties of α-Fe₂O₃ prepared in green chemistry from Capsicum plant extract. After several simple preparatory steps, such as washing and cutting, they were treated with an inorganic complex (potassium hexacyanoferrate) (K3[Fe(CN)₆]). In the first analytical step, the in vitro detection of the plant extract solution after reaction with the potassium hexacyanoferrate (III) complex revealed characteristic adsorption bands of the cyanide group, which disappeared upon complexation. The iron oxide NPs were characterized using various methods, including X
... Show MoreThis study was aime to investigate the effect of addition different concentration of celery leaves to white soft cheese ,Treated cheese between 2018-2019, ,The finely Celery (Apium graveolens) leaves were adding to crude white cheese after texturizing in three leveles included (A,B,C) in addition of control antimicrobial activity of celery treated cheese against total account bacteria and coliform bacteria was estimated during (0, 5, 10, 15, 20) days. The results were shown that the higher concentration of celery in treated cheese, had a lower concentration of protein, lipid and ash content ( 16.81,15.13 and 4.30% respectively, but it had a higher moisture content 59.50%.also the total bacteria counts were decreasing significantly (0.05 P)w
... Show MoreAbstract: In this paper, a U-shaped probe with a curvature diameter of half a centimeter was implemented using plastic optical fibers. A layer of the outer shell of the fibers was removed by polishing to a D-section. The sensor was tested by immersing it in a sodium chloride solution with variable refractive index depending on solution concentrations ranging from 1.333 to 1.363. In this design, the sensor experienced a decrease in its intensity as the concentration of the solution increased. The next step The sensor was coated with a thin layer of gold with a thickness of 20 nm, and the sensor was tested with the same solutions which resulted in a shift in wavelengths where the shift in wavelength was 5.37 nm and sensiti
... Show More