Rotating fan shaft system was investigated experimentally and theoretically to study its dynamic performance. The type of oil used for the bearing was taken in consideration during the experimental program .Three types of oil were used, SAE 40, SAE 50 and degraded oil. During the experiments, the fan blades stagger angle was changed through angles (20˚, 30˚, 40˚, and 50˚). The shaft rotational speed also changed in the range of (0-3000 rpm). All these parameters have investigated for two cases (balanced and unbalanced fan). The performance parameters of the fan were found experimentally by measuring the fan, volume flow rate, Reynolds and Strouhal numbers, efficiency and pressure head. Analytical part was also represented to prepare the prediction of fan system dynamic performance. The aerodynamic forces and moments of each blade were also predicted to obtain the rotor dynamic future. Experimentally and theoretically the critical fan speed was obtained in the x and y direction for different lubricant oil viscosities and shaft rotational velocities for balanced and unbalanced fan. Analysis of the vibrational response gave important information about the dynamic performance of fan rotating system. Acceptable agreement was found between analytical and experimental results.
Active vibration control is the main problem in different structure. Smart material like piezoelectric make a structure smart, adaptive and self-controlling so, they are effective in active vibration control. In this paper piezoelectric elements are used as sensors and actuators in flexible structures for sensing and actuating purposes, and to control the vibration of a cantilever beam by using sliding mode control. The sliding mode controller (SMC) is designed to attenuate the vibration induced by initial tip displacement which is equal to 15 mm. It is designed based on the balance realization reduction method where three states are selected for the reduced model from the 24th states that describe the c
... Show MoreOver the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame
The effect of superficial gas velocity within the range 0.01-0.164 m/s on gas holdup (overall, riser and down comer), volumetric oxygen mass transfer coefficient, liquid circulation velocity was studied in an internal loop concentric tubes airlift reactor (working volume 45 liters). It was shown that as the usg increases the gas holdup and also the liquid circulation velocity increase. Also it was found that increasing superficial gas velocity lead to increase the interfacial area that increases the overall oxygen mass transfer coefficient. The hydrodynamic experimental results were modeled with the available equations in the literature. The predicted data gave an acceptable accuracy with the empirical data.
The final
... Show MoreThis research is presented experimental and numerical investigations of composite concrete-steel plate shear walls under axial loads to predicate the effect of both concrete compressive strength and aspect ratio of the wall on the axial capacity, lateral displacement and axial shortening of the walls. The experimental program includes casting and testing two groups of walls with various aspect ratios. The first group with aspect ratio H/L=1.667 and the second group with aspect ratio H/L=2. Each group consists of three composite concrete -steel plate wall with three targets of cube compressive strength of values 39, 54.75 and 63.3 MPa. The tests result obtained that the increase in concrete compressive strength results in increasing
... Show MorePurpose: We report a series of 29 pediatric patients who sustained head injuries due to metallic ceiling fans. They all were admitted to the Emergency Department of Neurosurgery Teaching Hospital in Baghdad, Iraq, during January 2015 to January 2017. Results: Pediatric ceiling fan head injuries are characterized by four traits which distinguish them from other types of head injuries; 1- Most of them were because of climbing on or jumping from furniture between the ages of two and five. 2- Most of them sustained compound depressed skull fracture which associated with intracranial lesions and pneumocephalus. 3- The most common indication for surgical intervention was because of dirty wound which mixed with hairs. 4- These variables were stati
... Show MoreNumerical study is adapted to combine between piezoelectric fan as a turbulent air flow generator and perforated finned heat sinks. A single piezoelectric fan with different tip amplitudes placed eccentrically at the duct entrance. The problem of solid and perforated finned heat sinks is solved and analyzed numerically by using Ansys 17.2 fluent, and solving three dimensional energy and Navier–Stokes equations that set with RNG based k−ε scalable wall function turbulent model. Finite volume algorithm is used to solve both phases of solid and fluid. Calculations are done for three values of piezoelectric fan amplitudes 25 mm, 30 mm, and 40 mm, respectively. Results of this numerical study are compared with previous b
... Show MoreWith the increase in industry and industrial products, quantities of waste have increased worldwide, especially plastic waste, as plastic pollution is considered one of the wastes of the modern era that threatens the environment and living organisms. On this basis, a solution must be found to use this waste and recycle it safely so that it does not threaten the environment. Therefore, this research used plastic waste as an improvement material for clay soil. In this research, two types of tests were conducted, the first of which was a laboratory test, where the undrained shear strength (cohesion), compression index (Cc), and swelling index (Cr) of the improved and unimproved soils were calculated (plastic was added in pr
... Show MoreThe placement of buildings and structures on/or adjacent to slopes is possible, but this poses a danger to the structure due to failures that occur in slopes. Therefore, a solution or improvement should be determined for these issues of the collapse of the structure as a result of the failure of the slopes. A laboratory model has been built to test the impact of some variables on the bearing capacity factor. The variables include the magnitude of static axial load applied at the center of footing, the depth of embedment, the spacing between geogrid reinforcement layer and the numbering of the geogrid sheet under the footing, the inclination angle of slope clayey soil (β), the spacing between the footing's edge and the slope's end (b/H). Th
... Show More