Roller compacted concrete (RCC) is a concrete of no slump, no reinforcement, no finishing, and compacted using vibratory roller. When compared with conventional concrete, it contains less water content
when compared to traditional concrete. The RCC technique achieves significant time and cost savings during the construction of concrete. This study demonstrates the preparation of RCC slab of (38 ×38× 10) cm
samples by using roller compactor which is manufactured in local markets. The Hydrated lime additive is used to study the mechanical and physical properties of that RCC slab samples. This investigation is divided
into two main stages: The First stage consists of hammer compaction method with two gradation of aggregate, dense and gap graded aggregate, using five percentages of cement content (10, 12, 14, 16, and 18) as a percentage of the total aggregate content. This stage is carried out for selecting the maximum dry density, optimum moisture content, and optimum cement content which is utilized in RCC slab samples
construction, a total of 49 cylinder samples sized (10 cm diameter and 11.6 cm high) are prepared. The Second stage is classified into two sub stages; the first one consists of constructing RCC slab samples using roller compaction, 12% cement as a percentage of total aggregate weight has been used according to the data obtained from first stage, this group presents reference mixes without additives. While the second sub stage presents RCC mix with hydrated lime additive and with the same gradation of mixes compact by hammer compaction method, hydrated lime was implemented as (5, 10, 12, and 15) percentage
as a partial replacement of cement content. Both of physical and mechanical properties of RCC are studied using cores, sawed cubes, and sawed beams obtained from RCC slab samples. The properties studied were porosity, absorption, and compressive strength, splitting tensile strength and flexural strength by using third point loading method. The results show that hydrated lime improved the overall properties of RCC as compared to reference mix. Mixes with 5% lime give the optimum values for most of strength properties. Dense graded mixes with hydrated lime show superior properties as compared to gap graded mixes.
An Investigation of estimated Mechanical Properties of AL-Alloys 2024-T3, which is the most commonly used in industrial applications, been established experimentally. A new novel Plasma Peening techniques had applied for the whole surfaces of the material by CNC-Plasma machine for 48 specimen, and then a new investigation were toke over to figure the amount of change in mechanical properties and estimated fatigue life. It found that improvement was showing a nonlinear behavior according to peening duration time, speed, peening distance, peening number, and amount of effected power on the depth of the material thickness. The major improvement was at medium speed long duration time normal peening distance. Which shows up t
... Show MoreBackground: Poly (methylmethacrylate) is not ideal in every aspect and has disadvantages such as insufficient surface hardness, increase water sorption and poor impact resistance and the latter being the primary cause of fracture of denture base resins. The aim of this study was to evaluate the effect of addition of silanized nano- hydroxyapatite (HA) on some properties of heat cured acrylic denture base material. Materials and methods: HA nano particles were first silanized with ï§MPS (tri methacryloxypropyletrimethoxy silane coupling agent) then ultrasonicated with methylmethacrylate (monomer) to disperse agglomerated nano particles and mixed with polymer. 2% by wt of HA nano particles was selected as the best concentration that add
... Show MoreExploding wire Technique is a way for production metal and its compound nanoparticle that is capable of production of bulk amount at low cost semiconductor. In this work a copper iodine nanoparticles were fabricate by exploding copper wires with different currents in iodine solution. The produced samples were examined by XRD, FTIR, SEM and TEM to characterize their properties. The XRD proved the Nano-size for producer. The crystalline size increases with increasing current. FTIR measurements show a peaks located at 638.92 for Cu-I stretch bond indicate on formation of copper iodide compound and the peaks intensities increase with increasing current. The SEM and TEM measurements show that the thin films have nanostructures.
In this work, a composite material was prepared from Low-density polyethylene (LDPE) with different weight percent of grain and calcinations kaolin at temperature of (850oC) using single screw extruder and a mixing machine operated at a temperature between (190-200oC). Some of mechanical and physical properties such as tensile strength, tensile strength at break, Young modulus, and elongation at break, shore hardness and water absorption were determined at different weight fraction of filler (0, 2, 7, 10 and 15%). It was found that the addition of filler increases the modulus of elasticity, elongation at break, shore hardness and impact strength; on other hand, it decreases the tensile strength and tensile strength
... Show MoreCr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.
This research presents an experimental investigation on the influence of metakaolin replacement percentage upon some properties of different concrete types. Three types of concrete were adopted (self- compacted concrete, high performance concrete and reactive powder concrete) all of high sulphate (SO3) percentage from the fine aggregate weight, 0.75%. Three percentages of metakaolin replacement were selected to be studied (5, 7 and 10) %. Three types of concrete properties (compressive, flexural and splitting tensile strength) were adopted to achieve better understanding for the influence of adding metakaolin.. The output results indicated that the percentage of metakaolin had a different level of positive effect on the compressive strength
... Show MoreThe main factors that make it possible to get the corrosion of reinforcing steel in concrete are chloride ions and the absorption of carbon dioxide from the environment, and each of them works with a mechanism which destroys the stable immunity of rebar in the concrete. In this work the effect of carbon dioxide content in the artificial concrete solution on the corrosion behavior of carbon steel reinforcing bar (CSRB) was studied, potentiostatically using CO2 stream gas at 6 level of concentrations; 0.03 to 2.0 weight percent, and the effect of rising electrolyte temperature was also followed in the range 20 to 50ᴼ C. Tafel plots and cyclic polarization procedures were obeyed to investigate the c
... Show MoreThe performance and durability of the asphalt pavement structure mainly depend on the strength of the bonding between the layers. Such a bond is achieved through the use of an adhesive material (tack coat) to bond the asphalt layers. The main objective of this study is to evaluate the effect of moisture in conjunction with repeated traffic loads on the strength of the bonding between asphalt layers using two types of tack coats with different application rates. Using the nominal maximum size of aggregate (NMAS), the layers were graded (25/19) and (19/9.5) mm. The slabs of multilayer asphalt concrete were prepared using a roller compactor using two types of tack coats to bond between layers, namely rapid curing cut back a
... Show MoreThe products of composites material are very sesetive to many variables, such as manufacturing process, additive materials, …. etc. Filler or additive plays a major role to determine the formation of the properties and behavior of the composites. In this study, polyethylene terephthalate-based compounds were produced and characterized. The work is concerned to prepare samples of Polyethylene terephthalate (PET) - zinc-ferrite (ZnFe2O4) with different addition ratio as zinc-ferrite (1, 2, 5, 10, 15 and 20) wt% obtained from mixing the solution with a hot pressing method applied under optimum conditions. The densities of the composites for all samples were calculated. Through the work the diffusion of zinc-ferrite i
... Show More