Roller compacted concrete (RCC) is a concrete of no slump, no reinforcement, no finishing, and compacted using vibratory roller. When compared with conventional concrete, it contains less water content
when compared to traditional concrete. The RCC technique achieves significant time and cost savings during the construction of concrete. This study demonstrates the preparation of RCC slab of (38 ×38× 10) cm
samples by using roller compactor which is manufactured in local markets. The Hydrated lime additive is used to study the mechanical and physical properties of that RCC slab samples. This investigation is divided
into two main stages: The First stage consists of hammer compaction method with two gradation of aggregate, dense and gap graded aggregate, using five percentages of cement content (10, 12, 14, 16, and 18) as a percentage of the total aggregate content. This stage is carried out for selecting the maximum dry density, optimum moisture content, and optimum cement content which is utilized in RCC slab samples
construction, a total of 49 cylinder samples sized (10 cm diameter and 11.6 cm high) are prepared. The Second stage is classified into two sub stages; the first one consists of constructing RCC slab samples using roller compaction, 12% cement as a percentage of total aggregate weight has been used according to the data obtained from first stage, this group presents reference mixes without additives. While the second sub stage presents RCC mix with hydrated lime additive and with the same gradation of mixes compact by hammer compaction method, hydrated lime was implemented as (5, 10, 12, and 15) percentage
as a partial replacement of cement content. Both of physical and mechanical properties of RCC are studied using cores, sawed cubes, and sawed beams obtained from RCC slab samples. The properties studied were porosity, absorption, and compressive strength, splitting tensile strength and flexural strength by using third point loading method. The results show that hydrated lime improved the overall properties of RCC as compared to reference mix. Mixes with 5% lime give the optimum values for most of strength properties. Dense graded mixes with hydrated lime show superior properties as compared to gap graded mixes.
The aim of this study is to investigate the behavior of composite castellated beam in which the concrete slab and steel beam connected together with headed studs shear connectors. Four simply supported composite beams with various degree of castellation were tested under two point static loads. One of these beams was built up using standard steel beam, i.e. without web openings, to be a reference beam. The other three beams were fabricated from the same steel I-section with various three castellation ratios, (25, 35, and 45) %. In all beams the concrete slab has the same section and properties. Deflection at mid span of all beams was measured at each 10 kN load increment. The test results show that the castellation process leads to
... Show MoreConcrete structures are exposed to aggressive environmental conditions that lead to corrosion of the embedded reinforcement and pre-stressing steel. Consequently, the safety of concrete structures may be compromised, and this requires a significant budgets to repair and maintain critical infrastructure. Prediction of structural safety can lead to significant reductions in maintenance costs by maximizing the impact of investments. The aim of this paper is to establish a framework to assess the reliability of existing post-tensioned concrete bridges. A time-dependent reliability analysis of an existing post-tensioned involving the assessment of Ynys-y-Gwas bridge has been presented in this study. The main cause of failure of this bridge was c
... Show MoreThis study aimed at evaluating the torsional capacity of reinforced concrete (RC) beams externally wrapped with fiber reinforced polymer (FRP) materials. An analytical model was described and used as a new computational procedure based on the softened truss model (STM) to predict the torsional behavior of RC beams strengthened with FRP. The proposed analytical model was validated with the existing experimental data for rectangular sections strengthened with FRP materials and considering torque-twist relationship and crack pattern at failure. The confined concrete behavior, in the case of FRP wrapping, was considered in the constitutive laws of concrete in the model. Then, an efficient algorithm was developed in MATLAB environment t
... Show MoreQA Sarhan, University of Anbar Sport and Physical Education Sciences, 2019
The current research seeks to identify the impact of Barman's model on acquisition of the concepts of jurisprudence of worship among students of the departments of Qur'anic sciences. To achieve the research objectives, the researcher relied on the experimental method through a design with partial control by relying on two experimental groups receiving teaching by using the Barman model and a control group receives teaching through the normal method. After applying the experiment, the study reached the following results: Students of the Department of Qur’anic Sciences in general need educational programs linked to the curriculum and built on scientific foundations, according to their needs and problems (psychological, cognitive, and soc
... Show MoreBackground: One of the most common problem associated with the used of soft denture lining material is microorganisms and fungal growth especially Candida albicans, which can result in chronic mucosal inflammation. The aim of this study was to evaluate the influence of chlorhexidine diacetate (CDA) salt Incorporation into soft denture lining material on antifungal activity; against Candida albicans, and the amount of chlorhexidine di-acetate salt leached out of soft liner/CDA composite. Furthermore, evaluate shear bond strength and hardness after CDA addition to soft liner Materials and methods: chlorhexidine diacetate salt was added to soft denture lining material at four different concentrations (0.05%, 0.1% and 0.2% by weight). Four hund
... Show MoreThe massive growth of the automotive industry and the development of vehicles use lead to produce a huge amount of waste tire rubber. Rubber tires are non-biodegradable, resulting in environmental problems such as fire risks. In this search, the flexural behavior of steel fiber reinforced self-compacting concrete (SFRSCC) beams containing different percentages and sizes of waste tire rubbers were studied and compared them with the flexural behavior of SCC and SFRSCC. Micro steel fiber (straight type) with aspect ratio 65 was used in mixes. The replacement of coarse and fine aggregate was 20% and 10% with chip and crumb rubber. Also, the replacement of limestone dust and silica fume was 50%, 25%, and 12% with ground rubbe
... Show More