A Genetic Algorithm optimization model is used in this study to find the optimum flow values of the Tigris river branches near Ammara city, which their water is to be used for central marshes restoration after mixing in Maissan River. These tributaries are Al-Areed, AlBittera and Al-Majar Al-Kabeer Rivers. The aim of this model is to enhance the water quality in Maissan River, hence provide acceptable water quality for marsh restoration. The model is applied for different water quality change scenarios ,i.e. , 10%,20% increase in EC,TDS and BOD. The model output are the optimum flow values for the three rivers while, the input data are monthly flows(1994-2011),monthly water requirements and water quality parameters (EC, TDS, BOD, DO and pH).The objective function adopted in the optimization model is in a form the sum of difference in each of the 5 water quality parameters, resulting from the
mixing equation of the waters of the rivers, from the accepted limits of these parameters , weighted by a penalty factor assigned for each water quality parameter according to its importance. The adopted acceptable limits are 1500,1000, 6,4 and 7, while the penalty factors are 1,0.8,0.8,0.8,and 0.2 for EC,TDS,BOD,DO,and pH respectively. The constraints adopted on the decision variables which the monthly flows of the three rivers are those that provide the monthly demands downstream each river, and not exceed a maximum monthly flow
limits. The maximum flow limits adopted are for three flow cases, wet, average and dry years. For each flow case three scenarios for the monthly water quality parameters were adopted , the average values(scenario 1),the 10% increase in EC,TDS, and BOD (Scenario
2),and the 20% increase in these three water quality parameters (Scenario 3). Hence nine cases are adopted and for each an optimum monthly flows are found for each river. The genetic optimization model adopt a variable number of population of 100 to 1000 in a step of
100,0.8 and 0.2 cross over and mutation rates, and three iterations to reach the stable optimum solutions. The results indicates that the flow analysis shows a significant decrease in the flow values of the three rives after year 2000,hence, the flow values for the period of (1994-1999), are excluded and the only used values are those for (2000-2011). The estimated monthly demands exhibits low variation. The observed optimum monthly flow values decrease in general as the case flow changed from wet to normal and dry cases. The change in Scenarios from S1 to S2 and S3 , do not necessarily increase all the required optimum monthly flow values. The obtained minimum objective functions do not exhibits a certain trend with the change in the flow cases and/or the change in the scenarios.
This paper describes the problem of online autonomous mobile robot path planning, which is consisted of finding optimal paths or trajectories for an autonomous mobile robot from a starting point to a destination across a flat map of a terrain, represented by a 2-D workspace. An enhanced algorithm for solving the problem of path planning using Bacterial Foraging Optimization algorithm is presented. This nature-inspired metaheuristic algorithm, which imitates the foraging behavior of E-coli bacteria, was used to find the optimal path from a starting point to a target point. The proposed algorithm was demonstrated by simulations in both static and dynamic different environments. A comparative study was evaluated between the developed algori
... Show More This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s
In this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as the Bayes method. The comparison was made using the mean error squares (MSE), where the best estimator is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).
Dujaila River is one of the Tigris River branches, its length is 69.45 km, 15 m width and 2.80 m depth, and discharge rate is 42.15m3/Sec. The river provides the water share for 396 thousand Acres.
The primary objective of this study is to evaluate the suitability of water resources, for various purposes in the Dujaila River, Wasit Governorate-central Iraq. Physical and chemical properties have been investigated for 9 surface samples of the period August 2015- March 2016. The tests have been taken for the water major ions, total dissolved solids, electrical conductivity and acidity . Results indicated that the river water is classified as fresh water, according to the total dissolved solid (TDS), which its value ranges between (665-68
The spray quality of two spraying agents with different physical properties was investigated under laboratory conditions to find whether the measurement of deposited drops could be affected by spraying those agents. The first spraying agent Moddus, which is a plant growth regulator, has a surface tension of 28 mN m-1 with almost half the value of the second spraying agent Kelpak (58 mN m-1). A mini boom sprayer containing three flat fan nozzles (XR 11003) was used in the test with three traveling speeds (4.74, 5.42 and 8.13 km. h-1). The test was performed to evaluate the quality of spray drops (spray coverage, spray density and stains diameter) after they were deposited on water sensitive papers (WSP). The results showed a higher ability o
... Show MoreRestoration is the main process in many applications. Restoring an original image from a damaged image is the foundation of the restoring operation, either blind or non-blind. One of the main challenges in the restoration process is to estimate the degradation parameters. The degradation parameters include Blurring Function (Point Spread Function, PSF) and Noise Function. The most common causes of image degradation are errors in transmission channels, defects in the optical system, inhomogeneous medium, relative motion between object and camera, etc. In our research, a novel algorithm was adopted based on Circular Hough Transform used to estimate the width (radius, sigma) of the Point Spread Function. This algorithm is based o
... Show MoreThis study was conducted to determining the variable effects on water quality of Greater Zab River in Erbil province, Iraq, using multivariate statistical analysis. Seventeen variables were monitored in four sampling sites during one year (from May 2012 to April 2013). The dataset were treated using principal component analysis (PCA)/ factor analysis (FA), cluster analysis (CA) to the most important factors affecting water quality, sources of pollution and suitability of water for drinking consumption and irrigation. Six factors were identified as responsible for the data structure explaining 73.5% of the total variance in the dataset and are conditionally named, hydrochemical from weathering, mineral salts and domestic wastes. CA showed
... Show More