A Genetic Algorithm optimization model is used in this study to find the optimum flow values of the Tigris river branches near Ammara city, which their water is to be used for central marshes restoration after mixing in Maissan River. These tributaries are Al-Areed, AlBittera and Al-Majar Al-Kabeer Rivers. The aim of this model is to enhance the water quality in Maissan River, hence provide acceptable water quality for marsh restoration. The model is applied for different water quality change scenarios ,i.e. , 10%,20% increase in EC,TDS and BOD. The model output are the optimum flow values for the three rivers while, the input data are monthly flows(1994-2011),monthly water requirements and water quality parameters (EC, TDS, BOD, DO and pH).The objective function adopted in the optimization model is in a form the sum of difference in each of the 5 water quality parameters, resulting from the
mixing equation of the waters of the rivers, from the accepted limits of these parameters , weighted by a penalty factor assigned for each water quality parameter according to its importance. The adopted acceptable limits are 1500,1000, 6,4 and 7, while the penalty factors are 1,0.8,0.8,0.8,and 0.2 for EC,TDS,BOD,DO,and pH respectively. The constraints adopted on the decision variables which the monthly flows of the three rivers are those that provide the monthly demands downstream each river, and not exceed a maximum monthly flow
limits. The maximum flow limits adopted are for three flow cases, wet, average and dry years. For each flow case three scenarios for the monthly water quality parameters were adopted , the average values(scenario 1),the 10% increase in EC,TDS, and BOD (Scenario
2),and the 20% increase in these three water quality parameters (Scenario 3). Hence nine cases are adopted and for each an optimum monthly flows are found for each river. The genetic optimization model adopt a variable number of population of 100 to 1000 in a step of
100,0.8 and 0.2 cross over and mutation rates, and three iterations to reach the stable optimum solutions. The results indicates that the flow analysis shows a significant decrease in the flow values of the three rives after year 2000,hence, the flow values for the period of (1994-1999), are excluded and the only used values are those for (2000-2011). The estimated monthly demands exhibits low variation. The observed optimum monthly flow values decrease in general as the case flow changed from wet to normal and dry cases. The change in Scenarios from S1 to S2 and S3 , do not necessarily increase all the required optimum monthly flow values. The obtained minimum objective functions do not exhibits a certain trend with the change in the flow cases and/or the change in the scenarios.
In this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as the Bayes method. The comparison was made using the mean error squares (MSE), where the best estimator is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).
This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MoreThe Geological modeling has been constructed by using Petrel E&P software to incorporate data, for improved Three-dimensional models of porosity model, water saturation, permeability estimated from core data, well log interpretation, and fault analysis modeling.
Three-dimensional geological models attributed with physical properties constructed from primary geological data. The reservoir contains a huge hydrocarbon accumulation, a unique geological model characterization with faults, high heterogeneity, and a very complex field in nature.
The results of this study show that the Three-dimensional geological model of Khasib reservoir, to build the reservoir model starting with evaluation of reservoir to interpretation o
... Show More This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s
This paper describes the problem of online autonomous mobile robot path planning, which is consisted of finding optimal paths or trajectories for an autonomous mobile robot from a starting point to a destination across a flat map of a terrain, represented by a 2-D workspace. An enhanced algorithm for solving the problem of path planning using Bacterial Foraging Optimization algorithm is presented. This nature-inspired metaheuristic algorithm, which imitates the foraging behavior of E-coli bacteria, was used to find the optimal path from a starting point to a target point. The proposed algorithm was demonstrated by simulations in both static and dynamic different environments. A comparative study was evaluated between the developed algori
... Show MoreAfter restoration of Iraqi marshes during 2003, three locations were chosen, one in each main marsh (Um Al-Naaj site in Al-Hwaizeh marsh; Al-Nagarah site in Al-Hammar marsh and Al-Baghdadia site in Al-Chebaysh marsh) to determine the concentrations of nutrients (Nitrate, Nitrite, Phosphate and Silicate) in water seasonally for the period winter, spring, summer, and autumn at 2007. Five water replicates were collected from each site, seasonally. In the Lab., the samples were analyzed by colorimetric methods; the results showed that Um-Al-Naaj site has the highest nutrients level, while Al-Nagarah site has the lowest level. The statistical program t-test was applied at the significant levels (P-value < 0.01) and (P-value < 0.05) to know
... Show MoreThe objective of the current research is to find an optimum design of hybrid laminated moderate thick composite plates with static constraint. The stacking sequence and ply angle is required for optimization to achieve minimum deflection for hybrid laminated composite plates consist of glass and carbon long fibers reinforcements that impeded in epoxy matrix with known plates dimension and loading. The analysis of plate is by adopting the first-order shear deformation theory and using Navier's solution with Genetic Algorithm to approach the current objective. A program written with MATLAB to find best stacking sequence and ply angles that give minimum deflection, and the results comparing with ANSYS.
ENGLISH