Resistance spot welding (RSW) aluminum alloys has a major problem of inconsistent quality from weld to weld, because of the problems of the non-uniform oxide layer. The high resistivity of the oxide causes strong heat released which influence significantly on the electrode lifetime and the weld quality. Much effort has been devoted experimentally to the study of the sheet surface characteristics for as-received sheet and surface pretreatment sheet by pickling in NaOH and glassblasted with three thicknesses (0.6, 1.0, and 1.5 mm) of AA1050. Three different welding process parameters energy setup as a low, medium, and high were carried. Tensile-shear strength tests were performed to indicate the weld quality. Moreover, microhardness tests, macro/micrographs, and
SEM/EDS examinations were carried out to analyze, compare, and evaluate the effect of surface conditions on the weldability. The as received sheet showed a higher electrical contact resistance because of its thicker and non-uniform oxide layer. In contrast, the glass-blasted sheet showed lower value, since it has a roughest surface, which leads to easy breakdown the oxide layer. The highest average values and least scattering of the maximum load fracture are with treated sheet by
pickling in NaOH, these values are 760, 1193, and 2283 N for 0.6, 1.0, and 1.5 mm sheet thickness respectively for medium input energy. In contrast, the minimum values with glass-blasted sheet are 616, 1008, and 2020 N for 0.6, 1.0, and 1.5 mm sheet. The microhardness profiles of the fusion zone and HAZ is the lower than the base metal for all cases. Numerical simulation with SORPAS® was used to simulate and optimize the process parameters, and it has given good results in prediction when they compared with experiments.
When laser light incident on biological tissue, it is either reflected from the
surface of the tissue (e.g. the skin) or scattered inside the tissue or absorbed .The laser light will be
absorbed by water, hemoglobin and melanin. Absorption is also highly dependent on wave-length of
laser radiation. The absorbed light is converted into kinetic energy leading to laser effect that when
appropriately applied can produce reaction ranging from incision, vaporization to coagulation. Aim of
the study: To evaluate the efficiency of diode Laser 810 ± 20nm in treatment of oral lesions. Methods:
6 patients (2 females and 4 males) with different oral lesions were treated in the hospital of specialized
surgeries by the use of dio
Petroleum is one of the most important substances consumed by man at present times, a major energy source in this century, petroleum oils can cause environmental pollution during various stages of production, transportation, refining and use, petroleum hydrocarbons pollutions ranging from soil, ground water to marine environment, become an inevitable problem in the modern life, current study focused on bioremediation process of hydrocarbons contaminants that remaining in the bottom of gas cylinders and discharged to the soil. Twenty-four bacterial isolates were isolated from contaminated soils all of them gram negative bacteria, bacterial isolates screening to investigate the ability of biodegradation of hydrocarbons, these isolates
... Show MoreThe objective of this study is to investigate the application of advanced oxidation processes (AOPs) in the treatment of wastewater contaminated with furfural. The AOPs investigated is the homogeneous photo-Fenton (UV/H2O2/Fe+2) process. The experiments were conducted by using cylindrical stainless steel batch photo-reactor. The influence of different variables: initial concentration of H2O2 (300-1300mg/L), Fe+2(20-70mg/L), pH(2-7) and initial concentration of furfural (50-300 mg/L) and their relationship with the mineralization efficiency were studied.
Complete mineralization for the system UV/H2O2/Fe+2 was achieved at: initi
... Show MoreAG Al-Ghazzi, 2009
KA Sharquie, AA Al-Nuaimy, Annals of Saudi Medicine, 2002 - Cited by 48
Surface modeling utilizing Bezier technique is one of the more important tool in computer aided geometric design (CAD). The aim of this work is to design and implement multi-patches Bezier free-form surface. The technique has an effective contribution in technology domains and in ships, aircrafts, and cars industry, moreover for its wide utilization in making the molds. This work is includes the synthesis of these patches in a method that is allow the participation of these control point for the merge of the patches, and the confluence of patches at similar degree sides due to degree variation per patch. The model has been implemented to represent the surface. The interior data of the desired surfaces designed by M
... Show MoreReinforced concrete (RC) slabs strengthened with carbon fibre reinforced polymer (CFRP) and subjected to flexural actions may experience many types of failure, including FRP debonding, FRP rupture and concrete crushing. Of these different types of failure modes, FRP debonding stands out as the most predominant type of failure because of its dependence on the relatively weak bond interface between the soffit of the RC member and the FRP sheet attached to it. Many anchorage systems have been developed to enhance the performance of strengthened systems, one of which is the hybrid anchor, which combines the effects of patch anchors and spike anchors. Hybrid anchors have shown significant enhancement when used with RC members subjected to shear
... Show MoreIntroduction: This study aimed to assess the color change of human teeth with artificial enamel white spot lesions (WSLs) after sandblasting with bioactive glass, resin infiltration, and microabrasion and to test color stability after pH cycling. Methods: Fifty extracted human mandibular first molars were randomly assigned into five groups: Sound, WSLs (untreated), and WSLs sandblasted with bioactive glass (Sylc), WSLs treated by resin infiltration (ICON), and WSLs treated by microabrasion (Opalustre), respectively. All specimens underwent a pH cycling procedure. The color parameters for each specimen were assessed using an Easyshade dental spectrophotometer at different time stages then the color changes (ΔE) were calculated. Results: The
... Show MoreThe aim of this research is to design and construct a
semiconductor laser range finder operating in the near infrared range
for ranging and designation. The main part of the range finder is the
transmitter which is a semiconductor laser type GaAs of wavelength
0.904 μm with a beam expander and the receiver; a silicon pin
detector biased to approve the fast response time with it's collecting
optics. The transmitters pulse width was 200ns at a threshold current
of 10 Ampere and maximum operating current of 38 Ampere. The
repetition rate was set at 660Hz and the maximum operating output
power was around 1 watt. The divergence of the beam was 0.268o
the efficiency of the laser was 0.03% at a duty cycle of 1.32x