Preferred Language
Articles
/
joe-2062
Improvement of Resistance Spot Welding by Surfaces Treatment of AA1050 Sheets
...Show More Authors

Resistance spot welding (RSW) aluminum alloys has a major problem of inconsistent quality from weld to weld, because of the problems of the non-uniform oxide layer. The high resistivity of the oxide causes strong heat released which influence significantly on the electrode lifetime and the weld quality. Much effort has been devoted experimentally to the study of the sheet surface characteristics for as-received sheet and surface pretreatment sheet by pickling in NaOH and glassblasted with three thicknesses (0.6, 1.0, and 1.5 mm) of AA1050. Three different welding process parameters energy setup as a low, medium, and high were carried. Tensile-shear strength tests were performed to indicate the weld quality. Moreover, microhardness tests, macro/micrographs, and
SEM/EDS examinations were carried out to analyze, compare, and evaluate the effect of surface conditions on the weldability. The as received sheet showed a higher electrical contact resistance because of its thicker and non-uniform oxide layer. In contrast, the glass-blasted sheet showed lower value, since it has a roughest surface, which leads to easy breakdown the oxide layer. The highest average values and least scattering of the maximum load fracture are with treated sheet by
pickling in NaOH, these values are 760, 1193, and 2283 N for 0.6, 1.0, and 1.5 mm sheet thickness respectively for medium input energy. In contrast, the minimum values with glass-blasted sheet are 616, 1008, and 2020 N for 0.6, 1.0, and 1.5 mm sheet. The microhardness profiles of the fusion zone and HAZ is the lower than the base metal for all cases. Numerical simulation with SORPAS® was used to simulate and optimize the process parameters, and it has given good results in prediction when they compared with experiments.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Nov 28 2018
Journal Name
International Journal Of Engineering & Technology
Improvement of Gypsum Soil by Using Polyurethane to Reduce Erosion and Solubility of Irrigation Canals
...Show More Authors

The reducing of erosion and the solubility of irrigation canals soils which constructed on gypsum soil is important in civil and water resources engineering. The main problem of gypsum soils is the presence of gypsum which represents one of most complex engineering problems, especially when accompanied by the moving of water which represent dynamic load along the canal. There are several solutions to this problem, in this research “Poly urethane” is used to give the gypsum soil sufficient hardness to reduce the solubility and erosion, after compacting the soil in the canal, percentages of Poly urethane was used to making cover to the soil by mixing percent of soil with Poly urethane, and the ratio was as follows: (5 and 10) % an

... Show More
View Publication
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Improvement the corrosion Behavior of Titanium by Nanotubular Oxide in a simulated saliva solution
...Show More Authors
Abstract<p>The corrosion behavior of Titanium in a simulated saliva solution was improved by Nanotubular Oxide via electrochemical anodizing treatment using three electrodes cell potentiostat at 37°C. The anodization treatment was achieved in a non-aqueous electrolyte with the following composition: 200mL ethylene glycol containing 0.6g NH4F and 10 ml of deionized water and using different applied directed voltage at 10°C and constant time of anodizing (15 min.). The anodized titanium layer was examined using SEM, and AFM technique.</p><p>The results showed that increasing applied voltage resulted in formation titanium oxide nanotubes with higher corrosion resistance </p> ... Show More
View Publication
Scopus (6)
Crossref (5)
Scopus Crossref
Publication Date
Mon Jan 11 2021
Journal Name
Earth And Environmental Science
Impact Resistance of Limestone Cement Self Compacting Concrete Reinforced by Locally Available Grids
...Show More Authors

Impact strength of self-compacted concrete is a field of interest, mostly when the concrete is produced from sustainable materials. This research's main objective is to clarify the ability to use two types of Portland limestone cement (Karasta and Tasluja) in self compacted concrete under impact loading, further to the economic and environmental benefits of the limestone cement. The impact loading was applied by a low-speed test, using the drop ball on concrete. Moreover, the study reveals the resistance of the grids reinforced concrete to impact loading by using polymer grid, and steel grid reinforced concrete slabs. Mixes reinforced by steel mesh had the highest results, indicating that the steel mesh was more robust because it had

... Show More
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Engineering
Reinforcement of Asphalt Concrete by Polyester Fibers to Improve Flexural Bending Fatigue Resistance
...Show More Authors

Reinforcing asphalt concrete with polyester fibers considered as an active remedy to alleviate the harmful impact of fatigue deterioration. This study covers the investigation of utilizing two shapes of fibers size, 6.35 mm by 3.00 mm and 12.70 mm by 3.00 mm with mutual concentrations equal to 0.25 %, 0.50 % and 0.75 % by weight of mixture. Composition of asphalt mixture consists of different optimum (40-50) asphalt cement content, 12.50 mm nominal aggregate maximum size with limestone dust as a filler. Following the traditional asphalt cement and aggregate tests, three essential test were carried out on mixtures, namely: Marshall test (105 cylindrical specimens), indirect tensile strength test (21 cylindrical specimens)

... Show More
View Publication
Publication Date
Sun Dec 14 2014
Journal Name
Al-khwarizmi Engineering Journal
Determination of Optimum Welding Parameters for FSW AA2024-T351
...Show More Authors

 

Abstract

Friction stir welding is a relatively new joining process, which involves the joining of metals without fusion or filler materials. In this study, the effect of welding parameters on the mechanical properties of aluminum alloys AA2024-T351 joints produced by FSW was investigated.

Different ranges of welding parameters, as input factors, such as welding speed (6 - 34 mm/min) and rotational speed (725 - 1235 rpm) were used to obtain their influences on the main responses, in terms of elongation, tensile strength, and maximum bending force. Experimental measurements of main responses were taken and analyzed using DESIGN EXPERT 8 experimental design software which was used to develop t

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 01 2012
Journal Name
Arpn
Effect of friction stir welding parameters (rotation and transverse) speed on the transient temperature distribution in friction stir welding of AA 7020-t53
...Show More Authors

Three-dimensional nonlinear thermal numerical simulations are conducted for the friction stir welding (FSW) of AA 7020-T53. Three welding cases with tool (rotational and travel) speeds of 900rpm-40mm/min, 1400rpm-16mm/min and 1400rpm-40mm/in are analyzed. The objective is to study the variation of transient temperature in a friction stir welded plate of 5mm workpiece thickness. Based on the experimental records of transient temperature at several specific locations during the friction stir welding process for the AA 7020-T53, thermal numerical simulation is developed. The numerical results show that the temperature field in the FSW process is symmetrically distributed with respect to the welding line, increasing travel speed decreasing tran

... Show More
Scopus (42)
Scopus
Publication Date
Sat Sep 03 2022
Journal Name
International Journal Of Health Sciences
Biological treatment of hydrocarbons contaminated soil by Serratia ficaria
...Show More Authors

Petroleum is one of the most important substances consumed by man at present times, a major energy source in this century, petroleum oils can cause environmental pollution during various stages of production, transportation, refining and use, petroleum hydrocarbons pollutions ranging from soil, ground water to marine environment, become an inevitable problem in the modern life, current study focused on bioremediation process of hydrocarbons contaminants that remaining in the bottom of gas cylinders and discharged to the soil. Twenty-four bacterial isolates were isolated from contaminated soils all of them gram negative bacteria, bacterial isolates screening to investigate the ability of biodegradation of hydrocarbons, these isolates

... Show More
Crossref
Publication Date
Wed Dec 15 2010
Journal Name
Iraqi Journal Of Laser
Treatment of Oral Conditions by 810 nm Diode Laser
...Show More Authors

When laser light incident on biological tissue, it is either reflected from the
surface of the tissue (e.g. the skin) or scattered inside the tissue or absorbed .The laser light will be
absorbed by water, hemoglobin and melanin. Absorption is also highly dependent on wave-length of
laser radiation. The absorbed light is converted into kinetic energy leading to laser effect that when
appropriately applied can produce reaction ranging from incision, vaporization to coagulation. Aim of
the study: To evaluate the efficiency of diode Laser 810 ± 20nm in treatment of oral lesions. Methods:
6 patients (2 females and 4 males) with different oral lesions were treated in the hospital of specialized
surgeries by the use of dio

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 30 2003
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Water Treatment of Cooling Towers Blowdown by Ion Exchange
...Show More Authors

View Publication Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Treatment of Furfural Wastewater by (AOPs) Photo-Fenton Method
...Show More Authors

The objective of this study is to investigate the application of advanced oxidation processes (AOPs) in the treatment of wastewater contaminated with furfural. The AOPs investigated is the homogeneous photo-Fenton (UV/H2O2/Fe+2) process. The experiments were conducted by using cylindrical stainless steel batch photo-reactor. The influence of different variables: initial concentration of H2O2 (300-1300mg/L), Fe+2(20-70mg/L), pH(2-7) and initial concentration of furfural (50-300 mg/L) and their relationship with the mineralization efficiency were studied.

 Complete mineralization for the system UV/H2O2/Fe+2 was achieved at: initi

... Show More
View Publication Preview PDF