This research was designed to investigate the factors affecting the frequency of use of ride-hailing in a fast-growing metropolitan region in Southeast Asia, Kuala Lumpur. An intercept survey was used to conduct this study in three potential locations that were acknowledged by one of the most famous ride-hailing companies in Kuala Lumpur. This study used non-parametric and machine learning techniques to analyze the data, including the Pearson chi-square test and Bayesian Network. From 38 statements (input variables), the Pearson chi-square test identified 14 variables as the most important. These variables were used as predictors in developing a BN model that predicts the probability of weekly usage frequency of ride-hailing. According to the final model, the attitude of the commuters towards the speed of ride-hailing over hailing regular taxis was the most important and presented in all probability conditions. Several related studies also identified ride-hailing speed as one of the top reasons for using this travel option. The findings of this study imply that commuters still compare the ride-hailing services with the traditional taxis in Kuala Lumpur, especially in terms of complementarity to other modes, ease of payment, ease of access, and speed. It is critical to have a sustainable strategy for keeping commuters’ satisfaction at the highest level because if the ride-hailing services cannot meet the commuters’ expectations, they may switch back to conventional transport options.
This study includes the manufacture of four ternary alloys represented S60Se40-XPbX with weight ratios x = 0, 10, 20, and 30 by the melting point method. The components of each alloy were mixed separately, then placed in quartz ampoules and vacuumed out with a vacuum of roger that 10−4 Torr. The ampule was heated in two stages to avoid sudden dissipation and precipitation of selenium on the inner mass of the quartz tube. The ampoule was gradually heated and kept at 450°C for approximately 4 hours followed by 950°C for 10 hours.at a rate of 10 degrees Celsius, the temperature of the electric furnace
The comparison of double informative priors which are assumed for the reliability function of Pareto type I distribution. To estimate the reliability function of Pareto type I distribution by using Bayes estimation, will be used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of Pareto type I distribution . Assuming distribution of three double prior’s chi- gamma squared distribution, gamma - erlang distribution, and erlang- exponential distribution as double priors. The results of the derivaties of these estimators under the squared error loss function with two different double priors. Using the simulation technique, to compare the performance for
... Show MoreIn this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes