This research was designed to investigate the factors affecting the frequency of use of ride-hailing in a fast-growing metropolitan region in Southeast Asia, Kuala Lumpur. An intercept survey was used to conduct this study in three potential locations that were acknowledged by one of the most famous ride-hailing companies in Kuala Lumpur. This study used non-parametric and machine learning techniques to analyze the data, including the Pearson chi-square test and Bayesian Network. From 38 statements (input variables), the Pearson chi-square test identified 14 variables as the most important. These variables were used as predictors in developing a BN model that predicts the probability of weekly usage frequency of ride-hailing. According to the final model, the attitude of the commuters towards the speed of ride-hailing over hailing regular taxis was the most important and presented in all probability conditions. Several related studies also identified ride-hailing speed as one of the top reasons for using this travel option. The findings of this study imply that commuters still compare the ride-hailing services with the traditional taxis in Kuala Lumpur, especially in terms of complementarity to other modes, ease of payment, ease of access, and speed. It is critical to have a sustainable strategy for keeping commuters’ satisfaction at the highest level because if the ride-hailing services cannot meet the commuters’ expectations, they may switch back to conventional transport options.
The Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method extracted alkaloid compounds from the plant Catharanthus roseus and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles using Sodium TriPolyPhosphate (STPP). The extracted alkaloids were linked with Chitosan nanoparticles CSNPs by maleic anhydride to get the final product (CSNPs- Linker- alkaloids). The synthesized (CSNPs- Linker- alkaloids) was characterized using SEM spectroscopy UV–Vis., Zeta Potential, and HPLC High-Performance Liquid Chromatography. Scanning electron microscope (SEM) analysis shows that the Chitosan nanoparticles (CSNPs) have small dim
... Show MoreTransformation and many other substitution methods have been used to solve non-linear differential fractional equations. In this present work, the homotopy perturbation method to solve the non-linear differential fractional equation with the help of He’s Polynomials is provided as the transformation plays an essential role in solving differential linear and non-linear equations. Here is the α-Sumudu technique to find the relevant results of the gas dynamics equation in fractional order. To calculate the non-linear fractional gas dynamical problem, a consumer method created on the new homotopy perturbation a-Sumudu transformation method (HP TM) is suggested. In the Caputo type, the derivative is evaluated. a-Sumudu homotopy pe
... Show MoreIn this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D) Volterra type integral operator equation (N3D-VIOE) in R3 is introduced. The modelling of the majorant function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear 3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and illustrative examples are provided to show the accuracy and efficiency of the model.
Mathematical Subject Classificat
... Show MoreThe influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness
... Show MoreNano γ-Al2O3 support was prepared by co-precipitation method by using different calcination temperatures (550, 600, and 750) oC. Then nano NiMo/γ-Al2O3 catalyst was prepared by impregnation method were nickel carbonate (source of Ni) and ammonium paramolybdate (source of Mo) on the best prepared nano γ-Al2O3 support at calcination temperature 550 oC. Make the characterizations for prepared nano γ-Al2O3 support at different temperatures and for nano NiMo/γ-Al2O3 catalyst like X-ray diffraction, X-ray fluorescent, AFM, SEM, BET surface area, and pore volume.
The N
... Show MoreIn this paper two modifications on Kuznetsov model namely on growth rate law and fractional cell kill term are given. Laplace Adomian decomposition method is used to get the solution (volume of the tumor) as a function of time .Stability analysis is applied. For lung cancer the tumor will continue in growing in spite of the treatment.
The effect of different doping ratio (0.3, 0.5, and 0.7) with thickness in the range 300nmand annealed at different temp.(Ta=RT, 473, 573, 673) K on the electrical conductivity and hall effect measurements of AgInTe2thin film have and been investigated AgAlxIn(1-x) Te2 (AAIT) at RT, using thermal evaporation technique all the films were prepared on glass substrates from the alloy of the compound. Electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated as a function of doping. All films consist of two types of transport mechanisms for free carriers. The activation energy (Ea) decreased whereas electrical conductivity increases with increased doping. Results of Hall Effect
... Show MoreNowadays nanoparticles are used in many fields of life all over the world, and there are numerous ways to obtain them: chemical, physical and biological processes. In recent times, the biological method for the synthesis of nanoparticles associated with using plant extract is widely spread. Optimal conditions for synthesis of silver nanoparticles using aqueous seeds extract of Myristica fragrance were highlighted in this research, such as type of plant extract, weight of extracted plant material, volume ratio of plant extract to AgNO3 and temperature of reaction. The study proved that the optimal status for AgNPs synthesis by using 10 g of M. fragrance seeds powder were added to 100 mL boiled distilled water, then homogenized and filt
... Show MoreThis paper demonstrates a new technique based on a combined form of the new transform method with homotopy perturbation method to find the suitable accurate solution of autonomous Equations with initial condition. This technique is called the transform homotopy perturbation method (THPM). It can be used to solve the problems without resorting to the frequency domain.The implementation of the suggested method demonstrates the usefulness in finding exact solution for linear and nonlinear problems. The practical results show the efficiency and reliability of technique and easier implemented than HPM in finding exact solutions.Finally, all algorithms in this paper implemented in MATLAB version 7.12.
Two molecular imprinted polymer (MIP) membranes for Levofloxacin (LEV) were prepared based on PVC matrix. The imprinted polymers were prepared by polymerization of styrene (STY) as monomer, N,N methylene di acrylamide as a cross linker ,benzoyl peroxide (BPO) as an initiator and levofloxacin as a template. Di methyl adepate (DMA) and acetophenone (AOPH) were used as plasticizers , the molecular imprinted membranes and the non molecular imprinted membranes were prepared. The slopes and detection limits of the liquid electrodes ranged from -21.96 – -19.38 mV/decade and 2×10-4M- 4×10-4M, and Its response time was around 1 minute, respectively. The liquid electrodes were packed with 0.1 M standar
... Show More